Introduction: The formation of normal bone and bone healing requires the cAMP-responsive element binding protein 3-like-1 (Creb3l1) transmembrane transcription factor, as deletion of the murine CREB3L1 results in osteopenic animals with limited capacity to repair bone after a fracture. Creb3l1 undergoes regulated intramembrane proteolysis (RIP) to release the N-terminal transcription activating (TA) fragment that enters the nucleus and regulates the expression of target genes. Methods: To expand our understanding of Creb3l1’s role in skeletal development and skeletal patterning, we aimed to generate animals expressing only the TA fragment of Creb3l1 lacking the transmembrane domain and thereby not regulated through RIP. However, the CRISPR/Cas9-mediated genome editing in zebrafish Danio rerio caused a frameshift mutation that added 56 random amino acids at the C-terminus of the TA fragment (TA+), making it unable to enter the nucleus. Thus, TA+ does not regulate transcription, and the creb3l1TA+/TA+ fish do not mediate creb3l1-dependent transcription. Results: We document that the creb3l1TA+/TA+ fish exhibit defects in the patterning of caudal fin lepidotrichia, with significantly distalized points of proximal bifurcation and decreased secondary bifurcations. Moreover, using the caudal fin amputation model, we show that creb3l1TA+/TA+ fish have decreased regeneration and that their regenerates replicate the distalization and bifurcation defects observed in intact fins of creb3l1TA+/TA+ animals. These defects correlate with altered expression of the shha and ptch2 components of the Sonic Hedgehog signaling pathway in creb3l1TA+/TA+ regenerates. Conclusion: Together, our results uncover a previously unknown intersection between Creb3l1 and the Sonic Hedgehog pathway and document a novel role of Creb3l1 in tissue patterning.

1.
Rutkovskiy
A
,
Stensløkken
KO
,
Vaage
IJ
.
Osteoblast differentiation at a glance
.
Med Sci Monit Basic Res
.
2016
;
22
:
95
106
.
2.
Marks
SC
,
Gartland
A
,
Odgren
PR
.
Skeletal development
. In:
Martini
L
, editor.
Encyclopedia of endocrine diseases
.
New York
:
Elsevier
;
2004
. p.
261
72
.
3.
Langhans
MT
,
Alexander
PG
,
Tuan
RS
.
Chapter 28: skeletal development
. In:
Moody
SA
, editor.
Principles of developmental genetics
. 2nd ed.
Oxford
:
Academic Press
;
2015
. p.
505
30
.
4.
Keller
RB
,
Tran
TT
,
Pyott
SM
,
Pepin
MG
,
Savarirayan
R
,
McGillivray
G
, et al
.
Monoallelic and biallelic CREB3L1 variant causes mild and severe osteogenesis imperfecta, respectively
.
Genet Med
.
2018
;
20
(
4
):
411
9
.
5.
Symoens
S
,
Malfait
F
,
D’hondt
S
,
Callewaert
B
,
Dheedene
A
,
Steyaert
W
, et al
.
Deficiency for the ER-stress transducer OASIS causes severe recessive osteogenesis imperfecta in humans
.
Orphanet J Rare Dis
.
2013
;
8
:
154
.
6.
Lindahl
K
,
Åström
E
,
Dragomir
A
,
Symoens
S
,
Coucke
P
,
Larsson
S
, et al
.
Homozygosity for CREB3L1 premature stop codon in first case of recessive osteogenesis imperfecta associated with OASIS-deficiency to survive infancy
.
Bone
.
2018
;
114
:
268
77
.
7.
Cayami
FK
,
Maugeri
A
,
Treurniet
S
,
Setijowati
ED
,
Teunissen
BP
,
Eekhoff
EMW
, et al
.
The first family with adult osteogenesis imperfecta caused by a novel homozygous mutation in CREB3L1
.
Mol Genet Genomic Med
.
2019
;
7
(
8
):
e823
.
8.
Guillemyn
B
,
Kayserili
H
,
Demuynck
L
,
Sips
P
,
De Paepe
A
,
Syx
D
, et al
.
A homozygous pathogenic missense variant broadens the phenotypic and mutational spectrum of CREB3L1-related osteogenesis imperfecta
.
Hum Mol Genet
.
2019
;
28
(
11
):
1801
9
.
9.
Murakami
T
,
Saito
A
,
Hino
S
,
Kondo
S
,
Kanemoto
S
,
Chihara
K
, et al
.
Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation
.
Nat Cell Biol
.
2009
;
11
(
10
):
1205
11
.
10.
Funamoto
T
,
Sekimoto
T
,
Murakami
T
,
Kurogi
S
,
Imaizumi
K
,
Chosa
E
.
Roles of the endoplasmic reticulum stress transducer OASIS in fracture healing
.
Bone
.
2011
;
49
(
4
):
724
32
.
11.
Sehring
IM
,
Weidinger
G
.
Recent advancements in understanding fin regeneration in zebrafish
.
WIREs Developmental Biol
.
2020
;
9
(
1
):
e367
.
12.
Dietrich
K
,
Fiedler
IA
,
Kurzyukova
A
,
López-Delgado
AC
,
McGowan
LM
,
Geurtzen
K
, et al
.
Skeletal biology and disease modeling in zebrafish
.
J Bone Miner Res
.
2021
;
36
(
3
):
436
58
.
13.
Asada
R
,
Kanemoto
S
,
Kondo
S
,
Saito
A
,
Imaizumi
K
.
The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology
.
J Biochem
.
2011
;
149
(
5
):
507
18
.
14.
Fox
RM
,
Andrew
DJ
.
Transcriptional regulation of secretory capacity by bZip transcription factors
.
Front Biol
.
2015
;
10
(
1
):
28
51
.
15.
Di Giusto
P
,
Martín
M
,
Funes Chabán
M
,
Sampieri
L
,
Nicola
JP
,
Alvarez
C
.
Transcription factor CREB3L1 regulates the expression of the sodium/iodide symporter (NIS) in rat thyroid follicular cells
.
Cells
.
2022
;
11
(
8
):
1314
.
16.
Greenwood
M
,
Bordieri
L
,
Greenwood
MP
,
Rosso Melo
M
,
Colombari
DSA
,
Colombari
E
, et al
.
Transcription factor CREB3L1 regulates vasopressin gene expression in the rat hypothalamus
.
J Neurosci
.
2014
;
34
(
11
):
3810
20
.
17.
Kondo
S
,
Murakami
T
,
Tatsumi
K
,
Ogata
M
,
Kanemoto
S
,
Otori
K
, et al
.
OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes
.
Nat Cell Biol
.
2005
;
7
(
2
):
186
94
.
18.
Saito
A
,
Kanemoto
S
,
Kawasaki
N
,
Asada
R
,
Iwamoto
H
,
Oki
M
, et al
.
Unfolded protein response, activated by OASIS family transcription factors, promotes astrocyte differentiation
.
Nat Commun
.
2012
;
3
(
1
):
967
.
19.
Laforest
L
,
Brown
CW
,
Poleo
G
,
Géraudie
J
,
Tada
M
,
Ekker
M
, et al
.
Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays
.
Development
.
1998
;
125
(
21
):
4175
84
.
20.
Wehner
D
,
Cizelsky
W
,
Vasudevaro
MD
,
Ozhan
G
,
Haase
C
,
Kagermeier-Schenk
B
, et al
.
Wnt/β-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin
.
Cell Rep
.
2014
;
6
(
3
):
467
81
.
21.
Armstrong
BE
,
Henner
A
,
Stewart
S
,
Stankunas
K
.
Shh promotes direct interactions between epidermal cells and osteoblast progenitors to shape regenerated zebrafish bone
.
Development
.
2017
;
144
(
7
):
1165
76
.
22.
Westerfield
M
.
The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio)
.
University of Oregon Press
;
2007
.
23.
Schindelin
J
,
Rueden
CT
,
Hiner
MC
,
Eliceiri
KW
.
The ImageJ ecosystem: an open platform for biomedical image analysis
.
Mol Reprod Dev
.
2015
;
82
(
7–8
):
518
29
.
24.
Cardeira
J
,
Gavaia
PJ
,
Fernández
I
,
Cengiz
IF
,
Moreira-Silva
J
,
Oliveira
JM
, et al
.
Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin
.
Sci Rep
.
2016
;
6
(
1
):
39191
.
25.
Schindelin
J
,
Arganda-Carreras
I
,
Frise
E
,
Kaynig
V
,
Longair
M
,
Pietzsch
T
, et al
.
Fiji: an open-source platform for biological-image analysis
.
Nat Methods
.
2012
;
9
(
7
):
676
82
.
26.
Nachtrab
G
,
Kikuchi
K
,
Tornini
VA
,
Poss
KD
.
Transcriptional components of anteroposterior positional information during zebrafish fin regeneration
.
Development
.
2013
;
140
(
18
):
3754
64
.
27.
Poss
KD
,
Shen
J
,
Nechiporuk
A
,
McMahon
G
,
Thisse
B
,
Thisse
C
, et al
.
Roles for Fgf signaling during zebrafish fin regeneration
.
Dev Biol
.
2000
;
222
(
2
):
347
58
.
28.
Saint-Jeannet
J-P
.
Whole-Mount in situ hybridization of Xenopus embryos
.
Cold Spring Harb Protoc
.
2017
;
2017
(
12
):
pdb.prot097287
.
29.
Schubert
SW
,
Abendroth
A
,
Kilian
K
,
Vogler
T
,
Mayr
B
,
Knerr
I
, et al
.
bZIP-Type transcription factors CREB and OASIS bind and stimulate the promoter of the mammalian transcription factor GCMa/Gcm1 in trophoblast cells
.
Nucleic Acids Res
.
2008
;
36
(
11
):
3834
46
.
30.
Omori
Y
,
Imai
J
,
Suzuki
Y
,
Watanabe
S
,
Tanigami
A
,
Sugano
S
.
OASIS is a transcriptional activator of CREB/ATF family with a transmembrane domain
.
Biochem Biophys Res Commun
.
2002
;
293
(
1
):
470
7
.
31.
García
IA
,
Torres Demichelis
V
,
Viale
DL
,
Di Giusto
P
,
Ezhova
Y
,
Polishchuk
RS
, et al
.
CREB3L1-mediated functional and structural adaptation of the secretory pathway in hormone-stimulated thyroid cells
.
J Cell Sci
.
2017
;
130
(
24
):
4155
67
.
32.
Murakami
T
,
Kondo
S
,
Ogata
M
,
Kanemoto
S
,
Saito
A
,
Wanaka
A
, et al
.
Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress
.
J Neurochem
.
2006
;
96
(
4
):
1090
100
.
33.
Thomas
HR
,
Percival
SM
,
Yoder
BK
,
Parant
JM
.
High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis
.
PLoS One
.
2014
;
9
(
12
):
e114632
.
34.
Sztul
E
,
Chen
PW
,
Casanova
JE
,
Cherfils
J
,
Dacks
JB
,
Lambright
DG
, et al
.
ARF GTPases and their GEFs and GAPs: concepts and challenges
.
Mol Biol Cell
.
2019
;
30
(
11
):
1249
71
.
35.
Kamikawa
Y
,
Saito
A
,
Matsuhisa
K
,
Kaneko
M
,
Asada
R
,
Horikoshi
Y
, et al
.
OASIS/CREB3L1 is a factor that responds to nuclear envelope stress
.
Cell Death Discov
.
2021
;
7
(
1
):
152
.
36.
Chen
Q
,
Lee
CE
,
Denard
B
,
Ye
J
.
Sustained induction of collagen synthesis by TGF-β requires regulated intramembrane proteolysis of CREB3L1
.
PLoS One
.
2014
;
9
(
10
):
e108528
.
37.
García-Mata
R
,
Bebök
Z
,
Sorscher
EJ
,
Sztul
ES
.
Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera
.
J Cell Biol
.
1999
;
146
(
6
):
1239
54
.
38.
Lamark
T
,
Johansen
T
.
Aggrephagy: selective disposal of protein aggregates by macroautophagy
.
Int J Cell Biol
.
2012
;
2012
:
736905
.
39.
Andersson
K
,
Malmgren
B
,
Åström
E
,
Nordgren
A
,
Taylan
F
,
Dahllöf
G
.
Mutations in COL1A1/A2 and CREB3L1 are associated with oligodontia in osteogenesis imperfecta
.
Orphanet J Rare Dis
.
2020
;
15
(
1
):
80
.
40.
Lindsay
SE
,
Nicol
LE
,
Gamayo
AC
,
Raney
EM
.
An unusual presentation of osteogenesis imperfecta: a case report
.
JBJS Case Connect
.
2021
;
11
(
4
).
41.
Uemoto
T
,
Abe
G
,
Tamura
K
.
Regrowth of zebrafish caudal fin regeneration is determined by the amputated length
.
Sci Rep
.
2020
;
10
(
1
):
649
.
42.
Du
SJ
,
Frenkel
V
,
Kindschi
G
,
Zohar
Y
.
Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein
.
Dev Biol
.
2001
;
238
(
2
):
239
46
.
43.
Braunstein
JA
,
Robbins
AE
,
Stewart
S
,
Stankunas
K
.
Basal epidermis collective migration and local Sonic hedgehog signaling promote skeletal branching morphogenesis in zebrafish fins
.
Dev Biol
.
2021
;
477
:
177
90
.
44.
Cunningham
TJ
,
Duester
G
.
Mechanisms of retinoic acid signalling and its roles in organ and limb development
.
Nat Rev Mol Cell Biol
.
2015
;
16
(
2
):
110
23
.
45.
Tickle
C
,
Towers
M
.
Sonic hedgehog signaling in limb development
.
Front Cell Dev Biol
.
2017
;
5
:
14
.
46.
König
D
,
Page
L
,
Chassot
B
,
Jaźwińska
A
.
Dynamics of actinotrichia regeneration in the adult zebrafish fin
.
Dev Biol
.
2018
;
433
(
2
):
416
32
.
47.
Christou
M
,
Iliopoulou
M
,
Witten
PE
,
Koumoundouros
G
.
Segmentation pattern of zebrafish caudal fin is affected by developmental temperature and defined by multiple fusions between segments
.
J Exp Zool B Mol Dev Evol
.
2018
;
330
(
6–7
):
330
40
.
48.
Azevedo
AS
,
Sousa
S
,
Jacinto
A
,
Saúde
L
.
An amputation resets positional information to a proximal identity in the regenerating zebrafish caudal fin
.
BMC Dev Biol
.
2012
;
12
(
1
):
24
.
49.
Blum
N
,
Begemann
G
.
Retinoic acid signaling spatially restricts osteoblasts and controls ray-interray organization during zebrafish fin regeneration
.
Development
.
2015
;
142
(
17
):
2888
93
.
50.
Schebesta
M
,
Lien
CL
,
Engel
FB
,
Keating
MT
.
Transcriptional profiling of caudal fin regeneration in zebrafish
.
Sci World J
.
2006
;
6
(
Suppl 1
):
38
54
.
51.
Knopf
F
,
Hammond
C
,
Chekuru
A
,
Kurth
T
,
Hans
S
,
Weber
CW
, et al
.
Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin
.
Dev Cell
.
2011
;
20
(
5
):
713
24
.
52.
Stewart
S
,
Gomez
AW
,
Armstrong
BE
,
Henner
A
,
Stankunas
K
.
Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration
.
Cell Rep
.
2014
;
6
(
3
):
482
98
.
53.
Rabinowitz
JS
,
Robitaille
AM
,
Wang
Y
,
Ray
CA
,
Thummel
R
,
Gu
H
, et al
.
Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
5
):
E717
e726
.
54.
Harper
M
,
Hu
Y
,
Donahue
J
,
Acosta
B
,
Dievenich Braes
F
,
Nguyen
S
, et al
.
Thyroid hormone regulates proximodistal patterning in fin rays
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
21
):
e2219770120
.
55.
Stoick-Cooper
CL
,
Weidinger
G
,
Riehle
KJ
,
Hubbert
C
,
Major
MB
,
Fausto
N
, et al
.
Distinct Wnt signaling pathways have opposing roles in appendage regeneration
.
Development
.
2007
;
134
(
3
):
479
89
.
56.
Bhattacharya
S
,
Gargiulo
D
,
Iovine
MK
.
Simplet-dependent regulation of β-catenin signaling influences skeletal patterning downstream of Cx43
.
Development
.
2018
;
145
(
23
):
dev166975
.
57.
Quint
E
,
Smith
A
,
Avaron
F
,
Laforest
L
,
Miles
J
,
Gaffield
W
, et al
.
Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
13
):
8713
8
.
58.
Whitehead
GG
,
Makino
S
,
Lien
CL
,
Keating
MT
.
fgf20 is essential for initiating zebrafish fin regeneration
.
Science
.
2005
;
310
(
5756
):
1957
60
.
59.
Thompson
JD
,
Ou
J
,
Lee
N
,
Shin
K
,
Cigliola
V
,
Song
L
, et al
.
Identification and requirements of enhancers that direct gene expression during zebrafish fin regeneration
.
Development
.
2020
;
147
(
14
):
dev191262
.
60.
Towers
M
,
Wolpert
L
,
Tickle
C
.
Gradients of signalling in the developing limb
.
Curr Opin Cell Biol
.
2012
;
24
(
2
):
181
7
.
61.
Zhang
J
,
Jeradi
S
,
Strähle
U
,
Akimenko
MA
.
Laser ablation of the sonic hedgehog-a-expressing cells during fin regeneration affects ray branching morphogenesis
.
Dev Biol
.
2012
;
365
(
2
):
424
33
.
62.
Hingorani
M
,
Spitzweg
C
,
Vassaux
G
,
Newbold
K
,
Melcher
A
,
Pandha
H
, et al
.
The biology of the sodium iodide symporter and its potential for targeted gene delivery
.
Curr Cancer Drug Targets
.
2010
;
10
(
2
):
242
67
.
You do not currently have access to this content.