Introduction: Localized delivery of angiogenesis-promoting factors such as small molecules, nucleic acids, peptides, and proteins to promote the repair and regeneration of damaged tissues remains a challenge in vascular tissue engineering. Current delivery methods such as direct administration of therapeutics can fail to maintain the necessary sustained release profile and often rely on supraphysiologic doses to achieve the desired therapeutic effect. By implementing a microparticle delivery system, localized delivery can be coupled with sustained and controlled release to mitigate the risks involved with the high dosages currently required from direct therapeutic administration. Methods: For this purpose, poly(lactic-co-glycolic acid) (PLGA) microparticles were fabricated via anti-solvent microencapsulation and the loading, release, and delivery of model angiogenic molecules, specifically a small molecule, nucleic acid, and protein, were assessed in vitro using microvascular fragments (MVFs). Results: The microencapsulation approach utilized enabled rapid spherical particle formation and encapsulation of model drugs of different sizes, all in one method. The addition of a fibrin scaffold, required for the culture of the MVFs, reduced the initial burst of model drugs observed in release profiles from PLGA alone. Lastly, in vitro studies using MVFs demonstrated that higher concentrations of microparticles led to greater co-localization of the model therapeutic (miRNA) with MVFs, which is vital for targeted delivery methods. It was also found that the biodistribution of miRNA using the delivered microparticle system was enhanced compared to direct administration. Conclusion: Overall, PLGA microparticles, formulated and loaded with model therapeutic compounds in one step, resulted in improved biodistribution in a model of the vasculature leading to a future in translational revascularization.

1.
Fowkes
FGR
,
Aboyans
V
,
Fowkes
FJI
,
McDermott
MM
,
Sampson
UKA
,
Criqui
MH
.
Peripheral artery disease: epidemiology and global perspectives
.
Nat Rev Cardiol
.
2017
;
14
(
3
):
156
70
.
2.
Eid
MA
,
Mehta
K
,
Barnes
JA
,
Wanken
Z
,
Columbo
J
,
Stone
DH
, et al
.
Global burden of disease of peripheral artery disease
.
J Vasc Surg
.
2021
;
74
(
4
):
e327
.
3.
Liu
R
,
Li
L
,
Shao
C
,
Cai
H
,
Wang
Z
.
The impact of diabetes on vascular disease: progress from the perspective of epidemics and treatments
.
J Diabetes Res
.
2022
;
2022
:
1531289
.
4.
Thiruvoipati
T
,
Kielhorn
CE
,
Armstrong
EJ
.
Peripheral artery disease in patients with diabetes: epidemiology, mechanisms, and outcomes
.
World J Diabetes
.
2015
;
6
(
7
):
961
9
.
5.
Fowkes
FGR
,
Rudan
D
,
Rudan
I
,
Aboyans
V
,
Denenberg
JO
,
McDermott
MM
, et al
.
Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis
.
Lancet
.
2013
;
382
(
9901
):
1329
40
.
6.
Beckman
JA
,
Schneider
PA
,
Conte
MS
.
Advances in revascularization for peripheral artery disease: revascularization in PAD
.
Circ Res
.
2021
;
128
(
12
):
1885
912
.
7.
Li
C
,
Kitzerow
O
,
Nie
F
,
Dai
J
,
Liu
X
,
Carlson
MA
, et al
.
Bioengineering strategies for the treatment of peripheral arterial disease
.
Bioact Mater
.
2021
;
6
(
3
):
684
96
.
8.
Ahamad
S
,
Mathew
S
,
Khan
WA
,
Mohanan
K
.
Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia
.
Drug Discov Today
.
2022
;
27
(
5
):
1332
49
.
9.
Nishio
H
,
Masumoto
H
,
Sakamoto
K
,
Yamazaki
K
,
Ikeda
T
,
Minatoya
K
.
MicroRNA-145-loaded poly(lactic-co-glycolic acid) nanoparticles attenuate venous intimal hyperplasia in a rabbit model
.
J Thorac Cardiovasc Surg
.
2019
;
157
(
6
):
2242
51
.
10.
Feinberg
MW
,
Moore
KJ
.
MicroRNA regulation of atherosclerosis
.
Circ Res
.
2016
;
118
(
4
):
703
20
.
11.
Inoue
M
,
Itoh
H
,
Ueda
M
,
Naruko
T
,
Kojima
A
,
Komatsu
R
, et al
.
Vascular Endothelial Growth Factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis
.
Circulation
.
1998
;
98
(
20
):
2108
16
.
12.
Ganta
VC
,
Annex
BH
.
Peripheral vascular disease: preclinical models and emerging therapeutic targeting of the vascular endothelial growth factor ligand-receptor system
.
Expert Opin Ther Targets
.
2021
;
25
(
5
):
381
91
.
13.
Simón-Yarza
T
,
Formiga
FR
,
Tamayo
E
,
Pelacho
B
,
Prosper
F
,
Blanco-Prieto
MJ
.
PEGylated-PLGA microparticles containing VEGF for long term drug delivery
.
Int J Pharm
.
2013
;
440
(
1
):
13
8
.
14.
Mocanu
CA
,
Fuior
EV
,
Voicu
G
,
Rebleanu
D
,
Safciuc
F
,
Deleanu
M
, et al
.
P-selectin targeted RAGE-shRNA lipoplexes alleviate atherosclerosis-associated inflammation
.
J Control Release
.
2021
;
338
:
754
72
.
15.
Leong-Poi
H
,
Kuliszewski
MA
,
Lekas
M
,
Sibbald
M
,
Teichert-Kuliszewska
K
,
Klibanov
AL
, et al
.
Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle
.
Circ Res
.
2007
;
101
(
3
):
295
303
.
16.
Slaughter
BV
,
Khurshid
SS
,
Fisher
OZ
,
Khademhosseini
A
,
Peppas
NA
.
Hydrogels in regenerative medicine
.
Adv Mater
.
2009
;
21
(
32–33
):
3307
29
.
17.
Peppas
NA
,
Bures
P
,
Leobandung
W
,
Ichikawa
H
.
Hydrogels in pharmaceutical formulations
.
Eur J Pharm Biopharm
.
2000
;
50
(
1
):
27
46
.
18.
Green
JJ
,
Shi
J
,
Chiu
E
,
Leshchiner
ES
,
Langer
R
,
Anderson
DG
.
Biodegradable polymeric vectors for gene delivery to human endothelial cells
.
Bioconjug Chem
.
2006
;
17
(
5
):
1162
9
.
19.
Park
K
,
Skidmore
S
,
Hadar
J
,
Garner
J
,
Park
H
,
Otte
A
, et al
.
Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation
.
J Control Release
.
2019
;
304
:
125
34
.
20.
Shaikh
FM
,
Callanan
A
,
Kavanagh
EG
,
Burke
PE
,
Grace
PA
,
McGloughlin
TM
.
Fibrin: a natural biodegradable scaffold in vascular tissue engineering
.
Cells Tissues Organs
.
2008
;
188
(
4
):
333
46
.
21.
Acosta
FM
,
Stojkova
K
,
Zhang
J
,
Garcia Huitron
EI
,
Jiang
JX
,
Rathbone
CR
, et al
.
Engineering functional vascularized beige adipose tissue from microvascular fragments of models of healthy and type II diabetes conditions
.
J Tissue Eng
.
2022
;
13
:
20417314221109337
.
22.
Rosso
F
,
Marino
G
,
Giordano
A
,
Barbarisi
M
,
Parmeggiani
D
,
Barbarisi
A
.
Smart materials as scaffolds for tissue engineering
.
J Cell Physiol
.
2005
;
203
(
3
):
465
70
.
23.
Morin
KT
,
Tranquillo
RT
.
In vitro models of angiogenesis and vasculogenesis in fibrin gel
.
Exp Cell Res
.
2013
;
319
(
16
):
2409
17
.
24.
Frueh
FS
,
Später
T
,
Scheuer
C
,
Menger
MD
,
Laschke
MW
.
Isolation of murine adipose tissue-derived microvascular fragments as vascularization units for tissue engineering
.
J Vis Exp
.
2017
;
2017
(
122
):
55721
7
.
25.
Stone
R
,
Rathbone
CR
.
Microvascular fragment transplantation improves rat dorsal skin flap survival
.
Plast Reconstr Surg Glob Open
.
2016
;
4
(
12
):
e1140
7
.
26.
Thermo Fisher Scientific – US [Internet]
.
Methylene blue, high purity, biological stain
. Available from: https://www.thermofisher.com/order/catalog/product/A18174.14
27.
Thermo Fisher Scientific – US [Internet]
.
Cy3 dye-labeled pre-mir negative control #1
. Available from: https://www.thermofisher.com/order/catalog/product/AM17120
28.
Millipore Sigma – US [Internet]
.
Bovine serum albumin
. Available from: https://www.sigmaaldrich.com/US/en/substance/bovineserumalbumin123459048468
29.
Hines
DJ
,
Kaplan
DL
.
Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights
.
Crit Rev Ther Drug Carrier Syst
.
2013
;
30
(
3
):
257
76
.
30.
Ford Versypt
AN
,
Pack
DW
,
Braatz
RD
.
Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres: a review
.
J Control Release
.
2013
;
165
(
1
):
29
37
.
31.
Yoo
J
,
Won
YY
.
Phenomenology of the initial burst release of drugs from PLGA microparticles
.
ACS Biomater Sci Eng
.
2020
;
6
(
11
):
6053
62
.
32.
Kim
SW
,
Bae
YH
,
Okano
T
.
Hydrogels: swelling, drug loading, and release
.
Pharm Res
.
1992
;
9
(
3
):
283
90
.
33.
Grabnar
PA
,
Kristl
J
.
The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers
.
J Microencapsul
.
2011
;
28
(
4
):
323
35
.
You do not currently have access to this content.