Introduction: The influence of mechanical forces generated by stromal cells in the perivascular matrix is thought to be a key regulator in controlling blood vessel growth. Cadherins are mechanosensors that facilitate and maintain cell-cell interactions and blood vessel integrity, but little is known about how stromal cells regulate cadherin signaling in the vasculature. Our objective was to investigate the relationship between mechanical phenotypes of stromal cells with cadherin expression in 3D tissue engineering models of vascular growth. Methods: Stromal cell lines were subjected to a bead displacement assay to track matrix distortions and characterize mechanical phenotypes in 3D microtissue models. These cells included human ventricular cardiac (NHCF), dermal (NHDF), lung (NHLF), breast cancer-associated (CAF), and normal breast fibroblasts (NBF). Cells were embedded in a fibrin matrix (10 mg/mL) with fluorescent tracker beads; images were collected every 30 min. We also studied endothelial cells (ECs) in co-culture with mechanically active or inactive stromal cells and quantified N-Cad, OB-Cad, and VE-Cad expression using immunofluorescence. Results: Bead displacement studies identified mechanically active stromal cells (CAFs, NHCFs, NHDFs) that generate matrix distortions and mechanically inactive cells (NHLFs, NBFs). CAFs, NHCFs, and NHDFs displaced the matrix with an average magnitude of 3.17 ± 0.11 μm, 3.13 ± 0.06 μm, and 2.76 ± 0.05 μm, respectively, while NHLFs and NBFs displaced the matrix with an average of 1.82 ± 0.05 μm and 2.66 ± 0.06 μm in fibrin gels. Compared to ECs only, CAFs + ECs as well as NBFs + ECs in 3D co-culture significantly decreased expression of VE-Cad; in addition, Pearson’s Correlation Coefficient for N-Cad and VE-Cad showed a strong correlation (>0.7), suggesting cadherin colocalization. Using a microtissue model, we demonstrated that mechanical phenotypes associated with increased matrix deformations correspond to enhanced angiogenic growth. The results could suggest a mechanism to control tight junction regulation in developing vascular beds for tissue engineering scaffolds or understanding vascular growth during developmental processes. Conclusion: Our studies provide novel data for how mechanical phenotype of stromal cells in combination with secreted factor profiles is related to cadherin regulation, localization, and vascularization potential in 3D microtissue models.

1.
Ruehle
MA
,
Eastburn
EA
,
LaBelle
SA
,
Krishnan
L
,
Weiss
JA
,
Boerckel
JD
, et al
.
Extracellular matrix compression temporally regulates microvascular angiogenesis
.
Sci Adv
.
2020
;
6
(
34
):
eabb6351
.
2.
Loerakker
S
,
Stassen
OMJA
,
Ter Huurne
FM
,
Boareto
M
,
Bouten
CVC
,
Sahlgren
CM
.
Mechanosensitivity of Jagged-Notch signaling can induce a switch-type behavior in vascular homeostasis
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
16
):
E3682
91
.
3.
Bertassoni
LE
,
Cecconi
M
,
Manoharan
V
,
Nikkhah
M
,
Hjortnaes
J
,
Cristino
AL
, et al
.
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
.
Lab Chip
.
2014
;
14
(
13
):
2202
11
.
4.
Alspach
E
,
Flanagan
KC
,
Luo
X
,
Ruhland
MK
,
Huang
H
,
Pazolli
E
, et al
.
p38MAPK plays a crucial role in stromal-mediated tumorigenesis
.
Cancer Discov
.
2014
;
4
(
6
):
716
29
.
5.
Russell
JL
,
Goetsch
SC
,
Gaiano
NR
,
Hill
JA
,
Olson
EN
,
Schneider
JW
.
A dynamic notch injury response activates epicardium and contributes to fibrosis repair
.
Circ Res
.
2011
;
108
(
1
):
51
9
.
6.
McLane
LT
,
Chang
P
,
Granqvist
A
,
Boehm
H
,
Kramer
A
,
Scrimgeour
J
, et al
.
Spatial organization and mechanical properties of the pericellular matrix on chondrocytes
.
Biophys J
.
2013
;
104
(
5
):
986
96
.
7.
Sewell-Loftin
MK
,
Katz
JB
,
George
SC
,
Longmore
GD
.
Micro-strains in the extracellular matrix induce angiogenesis
.
Lab Chip
.
2020
;
20
(
15
):
2776
87
.
8.
Lazar
E
,
Sadek
HA
,
Bergmann
O
.
Cardiomyocyte renewal in the human heart: insights from the fall-out
.
Eur Heart J
.
2017
;
38
(
30
):
2333
42
.
9.
Travers
JG
,
Kamal
FA
,
Robbins
J
,
Yutzey
KE
,
Blaxall
BC
.
Cardiac fibrosis: the fibroblast awakens
.
Circ Res
.
2016
;
118
(
6
):
1021
40
.
10.
Witjas
FMR
,
van den Berg
BM
,
van den Berg
CW
,
Engelse
MA
,
Rabelink
TJ
.
Concise review: the endothelial cell extracellular matrix regulates tissue homeostasis and repair
.
Stem Cells Transl Med
.
2019
;
8
(
4
):
375
82
.
11.
Davis
GE
,
Senger
DR
.
Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization
.
Circ Res
.
2005
;
97
(
11
):
1093
107
.
12.
Edgar
LT
,
Hoying
JB
,
Utzinger
U
,
Underwood
CJ
,
Krishnan
L
,
Baggett
BK
, et al
.
Mechanical interaction of angiogenic microvessels with the extracellular matrix
.
J Biomech Eng
.
2014
;
136
(
2
):
021001
.
13.
Adil
MS
,
Narayanan
SP
,
Somanath
PR
.
Cell-cell junctions: structure and regulation in physiology and pathology
.
Tissue Barriers
.
2021
;
9
(
1
):
1848212
.
14.
Komarova
YA
,
Kruse
K
,
Mehta
D
,
Malik
AB
.
Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability
.
Circ Res
.
2017
;
120
(
1
):
179
206
.
15.
Carmeliet
P
,
Lampugnani
MG
,
Moons
L
,
Breviario
F
,
Compernolle
V
,
Bono
F
, et al
.
Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis
.
Cell
.
1999
;
98
(
2
):
147
57
.
16.
Bibert
S
,
Jaquinod
M
,
Concord
E
,
Ebel
C
,
Hewat
E
,
Vanbelle
C
, et al
.
Synergy between extracellular modules of vascular endothelial cadherin promotes homotypic hexameric interactions
.
J Biol Chem
.
2002
;
277
(
15
):
12790
801
.
17.
Brasch
J
,
Harrison
OJ
,
Ahlsen
G
,
Carnally
SM
,
Henderson
RM
,
Honig
B
, et al
.
Structure and binding mechanism of vascular endothelial cadherin: a divergent classical cadherin
.
J Mol Biol
.
2011
;
408
(
1
):
57
73
.
18.
Perryn
ED
,
Czirok
A
,
Little
CD
.
Vascular sprout formation entails tissue deformations and VE-cadherin-dependent cell-autonomous motility
.
Dev Biol
.
2008
;
313
(
2
):
545
55
.
19.
Bentley
K
,
Franco
CA
,
Philippides
A
,
Blanco
R
,
Dierkes
M
,
Gebala
V
, et al
.
The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis
.
Nat Cell Biol
.
2014
;
16
(
4
):
309
21
.
20.
Hendrix
MJ
,
Seftor
EA
,
Meltzer
PS
,
Gardner
LM
,
Hess
AR
,
Kirschmann
DA
, et al
.
Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry
.
Proc Natl Acad Sci U S A
.
2001
;
98
(
14
):
8018
23
.
21.
Boda-Heggemann
J
,
Regnier-Vigouroux
A
,
Franke
WW
.
Beyond vessels: occurrence and regional clustering of vascular endothelial (VE-)cadherin-containing junctions in non-endothelial cells
.
Cell Tissue Res
.
2009
;
335
(
1
):
49
65
.
22.
Sabatini
PJ
,
Zhang
M
,
Silverman-Gavrila
R
,
Bendeck
MP
,
Langille
BL
.
Homotypic and endothelial cell adhesions via N-cadherin determine polarity and regulate migration of vascular smooth muscle cells
.
Circ Res
.
2008
;
103
(
4
):
405
12
.
23.
Kruse
K
,
Lee
QS
,
Sun
Y
,
Klomp
J
,
Yang
X
,
Huang
F
, et al
.
N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability
.
J Cell Biol
.
2019
;
218
(
1
):
299
316
.
24.
Labernadie
A
,
Kato
T
,
Brugués
A
,
Serra-Picamal
X
,
Derzsi
S
,
Arwert
E
, et al
.
A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion
.
Nat Cell Biol
.
2017
;
19
(
3
):
224
37
.
25.
Luo
Y
,
Radice
GL
.
N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis
.
J Cell Biol
.
2005
;
169
(
1
):
29
34
.
26.
Riley
LA
,
Merryman
WD
.
Cadherin-11 and cardiac fibrosis: a common target for a common pathology
.
Cell Signal
.
2021
;
78
:
109876
.
27.
Chen
J
.
Cadherin-11 regulates calcific nodule formation by aortic valve interstitial cells
.
ASME 2013 summer bioengineering conference
;
2013
.
28.
Bowler
MA
,
Bersi
MR
,
Ryzhova
LM
,
Jerrell
RJ
,
Parekh
A
,
Merryman
WD
.
Cadherin-11 as a regulator of valve myofibroblast mechanobiology
.
Am J Physiol Heart Circ Physiol
.
2018
;
315
(
6
):
H1614
26
.
29.
Azad
T
,
Ghahremani
M
,
Yang
X
.
The role of YAP and TAZ in angiogenesis and vascular mimicry
.
Cells
.
2019
;
8
(
5
):
407
.
30.
Dupont
S
.
Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction
.
Exp Cell Res
.
2016
;
343
(
1
):
42
53
.
31.
Calvo
F
,
Ege
N
,
Grande-Garcia
A
,
Hooper
S
,
Jenkins
RP
,
Chaudhry
SI
, et al
.
Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts
.
Nat Cell Biol
.
2013
;
15
(
6
):
637
46
.
32.
Walther
BK
,
Rajeeva Pandian
NK
,
Gold
KA
,
Kiliç
ES
,
Sama
V
,
Gu
J
, et al
.
Mechanotransduction-on-chip: vessel-chip model of endothelial YAP mechanobiology reveals matrix stiffness impedes shear response
.
Lab Chip
.
2021
;
21
(
9
):
1738
51
.
33.
Sewell-Loftin
MK
,
Bayer
SVH
,
Crist
E
,
Hughes
T
,
Joison
SM
,
Longmore
GD
, et al
.
Cancer-associated fibroblasts support vascular growth through mechanical force
.
Sci Rep
.
2017
;
7
(
1
):
12574
.
34.
Choi
HJ
,
Kwon
YG
.
Roles of YAP in mediating endothelial cell junctional stability and vascular remodeling
.
BMB Rep
.
2015
;
48
(
8
):
429
30
.
35.
Shirure
VS
.
Building better tumor models: organoid systems to investigate angiogenesis
. In:
Soker
S
,
Skardal
A
, editors.
Tumor organoids
.
Cham
:
Springer International Publishing
;
2018
. p.
117
48
.
36.
Park
YK
,
Tu
TY
,
Lim
SH
,
Clement
IJM
,
Yang
SY
,
Kamm
RD
.
In vitro microvessel growth and remodeling within a three-dimensional microfluidic environment
.
Cell Mol Bioeng
.
2014
;
7
(
1
):
15
25
.
37.
Grainger
SJ
,
Carrion
B
,
Ceccarelli
J
,
Putnam
AJ
.
Stromal cell identity influences the in vivo functionality of engineered capillary networks formed by co-delivery of endothelial cells and stromal cells
.
Tissue Eng Part A
.
2013
;
19
(
9–10
):
1209
22
.
38.
Kosyakova
N
,
Kao
DD
,
Figetakis
M
,
López-Giráldez
F
,
Spindler
S
,
Graham
M
, et al
.
Differential functional roles of fibroblasts and pericytes in the formation of tissue-engineered microvascular networks in vitro
.
NPJ Regen Med
.
2020
;
5
:
1
.
39.
Johnson
BM
,
Johnson
AM
,
Heim
M
,
Buckley
M
,
Mortimer
B
,
Berry
JL
, et al
.
Biomechanical stimulation promotes blood vessel growth despite VEGFR-2 inhibition
.
BMC Biol
.
2023
;
21
(
1
):
290
.
40.
Zucchelli
E
,
Majid
QA
,
Foldes
G
.
New artery of knowledge: 3D models of angiogenesis
.
Vasc Biol
.
2019
;
1
(
1
):
H135
43
.
41.
Lust
ST
,
Shanahan
CM
,
Shipley
RJ
,
Lamata
P
,
Gentleman
E
.
Design considerations for engineering 3D models to study vascular pathologies in vitro
.
Acta Biomater
.
2021
;
132
:
114
28
.
42.
Sewell-Loftin
MK
,
Katz
JB
,
George
SC
,
Longmore
GD
.
Micro-strains in the extracellular matrix induce angiogenesis
.
Lab Chip
.
2020
;
20
(
15
):
2776
87
.
43.
Guo
Y
,
Miller
B
,
Heim
M
,
Gutierrez-Garcia
A
,
Jaskula-Sztul
R
,
Ren
B
, et al
.
Protocol for indirect and direct co-culture between human cancer cells and endothelial cells
.
STAR Protoc
.
2023
;
4
(
2
):
102177
.
44.
Bolte
S
,
Cordelières
FP
.
A guided tour into subcellular colocalization analysis in light microscopy
.
J Microsc
.
2006
;
224
(
Pt 3
):
213
32
.
45.
Antypas
H
,
Libberton
B
,
Melican
K
.
Reducing background cytokine expression in epithelial cells without serum starvation
.
MethodsX
.
2014
;
1
:
251
3
.
46.
Zudaire
E
,
Gambardella
L
,
Kurcz
C
,
Vermeren
S
.
A computational tool for quantitative analysis of vascular networks
.
PLoS One
.
2011
;
6
(
11
):
e27385
.
47.
Wang
C
,
Zhu
X
,
Feng
W
,
Yu
Y
,
Jeong
K
,
Guo
W
, et al
.
Verteporfin inhibits YAP function through up-regulating 14-3-3σ sequestering YAP in the cytoplasm
.
Am J Cancer Res
.
2016
;
6
(
1
):
27
37
.
48.
Sounni
NE
,
Dehne
K
,
van Kempen
L
,
Egeblad
M
,
Affara
NI
,
Cuevas
I
, et al
.
Stromal regulation of vessel stability by MMP14 and TGFbeta
.
Dis Model Mech
.
2010
;
3
(
5–6
):
317
32
.
49.
Charras
G
,
Yap
AS
.
Tensile forces and mechanotransduction at cell-cell junctions
.
Curr Biol
.
2018
;
28
(
8
):
R445
57
.
50.
Gloushankova
NA
,
Zhitnyak
IY
,
Rubtsova
SN
.
Role of epithelial-mesenchymal transition in tumor progression
.
Biochem
.
2018
;
83
(
12
):
1469
76
.
51.
Maurizi
A
,
Ciocca
M
,
Giuliani
C
,
Di Carlo
I
,
Teti
A
.
Role of neural (N)-Cadherin in breast cancer cell stemness and dormancy in the bone microenvironment
.
Cancers
.
2022
;
14
(
5
):
1317
.
52.
Wu
F
,
Yang
J
,
Liu
J
,
Wang
Y
,
Mu
J
,
Zeng
Q
, et al
.
Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer
.
Signal Transduct Target Ther
.
2021
;
6
(
1
):
218
.
53.
Bartoschek
M
,
Oskolkov
N
,
Bocci
M
,
Lövrot
J
,
Larsson
C
,
Sommarin
M
, et al
.
Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing
.
Nat Commun
.
2018
;
9
(
1
):
5150
.
54.
Hosaka
K
,
Yang
Y
,
Seki
T
,
Fischer
C
,
Dubey
O
,
Fredlund
E
, et al
.
Pericyte-fibroblast transition promotes tumor growth and metastasis
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
38
):
E5618
27
.
55.
Alonzo
LF
,
Moya
ML
,
Shirure
VS
,
George
SC
.
Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication
.
Lab Chip
.
2015
;
15
(
17
):
3521
9
.
56.
Moya
ML
,
Alonzo
LF
,
George
SC
.
Microfluidic device to culture 3D in vitro human capillary networks
.
Methods Mol Biol
.
2014
;
1202
:
21
7
.
57.
Scott
KE
,
Fraley
SI
,
Rangamani
P
.
A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
20
):
e2021571118
.
58.
Nardone
G
,
Oliver-De La Cruz
J
,
Vrbsky
J
,
Martini
C
,
Pribyl
J
,
Skládal
P
, et al
.
YAP regulates cell mechanics by controlling focal adhesion assembly
.
Nat Commun
.
2017
;
8
:
15321
.
59.
Matera
DL
,
Lee
AT
,
Hiraki
HL
,
Baker
BM
.
The role of Rho GTPases during fibroblast spreading, migration, and myofibroblast differentiation in 3D synthetic fibrous matrices
.
Cell Mol Bioeng
.
2021
;
14
(
5
):
381
96
.
60.
Wang
HR
,
Ogunjimi
AA
,
Zhang
Y
,
Ozdamar
B
,
Bose
R
,
Wrana
JL
.
Degradation of RhoA by Smurf1 ubiquitin ligase
.
Methods Enzymol
.
2006
;
406
:
437
47
.
61.
Katoh
K
,
Kano
Y
,
Ookawara
S
.
Rho-kinase dependent organization of stress fibers and focal adhesions in cultured fibroblasts
.
Genes Cells
.
2007
;
12
(
5
):
623
38
.
62.
Wang
B
,
Shao
W
,
Shi
Y
,
Liao
J
,
Chen
X
,
Wang
C
.
Verteporfin induced SUMOylation of YAP1 in endometrial cancer
.
Am J Cancer Res
.
2020
;
10
(
4
):
1207
17
.
63.
Wang
C
,
Jeong
K
,
Jiang
H
,
Guo
W
,
Gu
C
,
Lu
Y
, et al
.
YAP/TAZ regulates the insulin signaling via IRS1/2 in endometrial cancer
.
Am J Cancer Res
.
2016
;
6
(
5
):
996
1010
.
64.
Shirure
VS
,
Lezia
A
,
Tao
A
,
Alonzo
LF
,
George
SC
.
Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis
.
Angiogenesis
.
2017
;
20
(
4
):
493
504
.
You do not currently have access to this content.