Background: Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, opens new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organized spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable “co-development” between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). Summary: While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. Key Message: This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general and in particular to address open questions in PGC development and gametogenesis.

1.
Moris
N
,
Alev
C
,
Pera
M
,
Martinez Arias
A
.
Biomedical and societal impacts of in vitro embryo models of mammalian development
.
Stem Cell Rep
.
16
(
5
):
1021
30
.
2.
Rossant
J
.
Mouse and human blastocyst-derived stem cells: vive les differences
.
Development
.
2015
;
142
(
1
):
9
12
.
3.
Tang
WWC
,
Kobayashi
T
,
Irie
N
,
Dietmann
S
,
Surani
MA
.
Specification and epigenetic programming of the human germ line
.
Nat Rev Genet
.
2016
;
17
(
10
):
585
600
.
4.
Irie
N
,
Weinberger
L
,
Tang
WWC
,
Kobayashi
T
,
Viukov
S
,
Manor
YS
, et al
.
SOX17 is a critical specifier of human primordial germ cell fate
.
Cell
.
2015
;
160
(
1–2
):
253
68
.
5.
Oh
Y
,
Jang
J
.
Directed differentiation of pluripotent stem cells by transcription factors
.
Mol Cell
.
2019
;
42
(
3
):
200
9
.
6.
Kojima
Y
,
Sasaki
K
,
Yokobayashi
S
,
Sakai
Y
,
Nakamura
T
,
Yabuta
Y
, et al
.
Evolutionarily distinctive transcriptional and signaling programs drive human germ cell lineage specification from pluripotent stem cells
.
Cell Stem Cell
.
2017
;
21
(
4
):
517
32.e5
.
7.
Lawson
KA
,
Hage
WJ
.
Clonal analysis of the origin of primordial germ cells in the mouse
.
Ciba Found Symp
.
1994
;
182
:
68
91
; discussion 84-91.
8.
Kobayashi
T
,
Castillo-Venzor
A
,
Penfold
CA
,
Morgan
M
,
Mizuno
N
,
Tang
WWC
, et al
.
Tracing the emergence of primordial germ cells from bilaminar disc rabbit embryos and pluripotent stem cells
.
Cell Rep
.
2021
;
37
(
2
):
109812
.
9.
Aeckerle
N
,
Drummer
C
,
Debowski
K
,
Viebahn
C
,
Behr
R
.
Primordial germ cell development in the marmoset monkey as revealed by pluripotency factor expression: suggestion of a novel model of embryonic germ cell translocation
.
Mol Hum Reprod
.
2015
;
21
(
1
):
66
80
.
10.
Sasaki
K
,
Nakamura
T
,
Okamoto
I
,
Yabuta
Y
,
Iwatani
C
,
Tsuchiya
H
, et al
.
The germ cell fate of cynomolgus monkeys is specified in the nascent amnion
.
Dev Cell
.
2016
;
39
(
2
):
169
85
.
11.
Saitou
M
,
Yamaji
M
.
Primordial germ cells in mice
.
Cold Spring Harb Perspect Biol
.
2012
;
4
:
a008375
.
12.
Chiquoine
AD
.
The identification, origin, and migration of the primordial germ cells in the mouse embryo
.
Anat Rec
.
1954
;
118
(
2
):
135
46
. .
13.
Chen
D
,
Sun
N
,
Hou
L
,
Kim
R
,
Faith
J
,
Aslanyan
M
, et al
.
Human primordial germ cells are specified from lineage-primed progenitors
.
Cell Rep
.
2019
;
29
(
13
):
4568
82.e5
.
14.
Sybirna
A
,
Tang
WWC
,
Pierson Smela
M
,
Dietmann
S
,
Gruhn
WH
,
Brosh
R
, et al
.
A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons
.
Nat Commun
.
2020
;
11
(
1
):
1282
18
.
15.
Campolo
F
,
Gori
M
,
Favaro
R
,
Nicolis
S
,
Pellegrini
M
,
Botti
F
, et al
.
Essential role of Sox2 for the establishment and maintenance of the germ cell line
.
Stem Cell
.
2013
;
31
(
7
):
1408
21
.
16.
Rugg-Gunn
PJ
,
Moris
N
,
Tam
PPL
.
Technical challenges of studying early human development
.
Development
.
2023
;
150
:
dev201797
.
17.
Sasaki
K
,
Yokobayashi
S
,
Nakamura
T
,
Okamoto
I
,
Yabuta
Y
,
Kurimoto
K
, et al
.
Robust in vitro induction of human germ cell fate from pluripotent stem cells
.
Cell Stem Cell
.
2015
;
17
(
2
):
178
94
.
18.
Hayashi
K
,
Ohta
H
,
Kurimoto
K
,
Aramaki
S
,
Saitou
M
,
Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells
.
Cell
.
2011
;
146
(
4)
:
519
32
.
19.
Hayashi
M
,
Kawaguchi
T
,
Durcova-Hills
G
,
Imai
H
.
Generation of germ cells from pluripotent stem cells in mammals
.
Reprod Med Biol
.
2018
;
17
(
2
):
107
14
.
20.
Shono
M
,
Kishimoto
K
,
Hikabe
O
,
Hayashi
M
,
Semi
K
,
Takashima
Y
, et al
.
Induction of primordial germ cell-like cells from common marmoset embryonic stem cells by inhibition of WNT and retinoic acid signaling
.
Sci Rep
.
2023
;
13
(
1
):
3186
.
21.
Seita
Y
,
Cheng
K
,
McCarrey
JR
,
Yadu
N
,
Cheeseman
IH
,
Bagwell
A
, et al
.
Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells
.
Elife
.
2023
;
12
:
e82263
.
22.
Kubiura-Ichimaru
M
,
Penfold
C
,
Kojima
K
,
Dollet
C
,
Yabukami
H
,
Semi
K
, et al
.
mRNA-based generation of marmoset PGCLCs capable of differentiation into gonocyte-like cells
.
Stem Cell Rep
.
2023
;
18
(
10
):
1987
2002
.
23.
Sosa
E
,
Chen
D
,
Rojas
EJ
,
Hennebold
JD
,
Peters
KA
,
Wu
Z
, et al
.
Differentiation of primate primordial germ cell-like cells following transplantation into the adult gonadal niche
.
Nat Commun
.
2018
;
9
(
1
):
5339
13
.
24.
Romualdez-Tan
MV
.
Modelling in vitro gametogenesis using induced pluripotent stem cells: a review
.
Cell Regen
.
2023
;
12
(
1
):
33
.
25.
Ishikura
Y
,
Ohta
H
,
Sato
T
,
Murase
Y
,
Yabuta
Y
,
Kojima
Y
, et al
.
In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells
.
Cell Stem Cell
.
2021
;
28
(
12
):
2167
79.e9
.
26.
Nakamura
T
,
Okamoto
I
,
Sasaki
K
,
Yabuta
Y
,
Iwatani
C
,
Tsuchiya
H
, et al
.
A developmental coordinate of pluripotency among mice, monkeys and humans
.
Nature
.
2016
;
537
(
7618
):
57
62
.
27.
Hayashi
K
,
Ogushi
S
,
Kurimoto
K
,
Shimamoto
S
,
Ohta
H
,
Saitou
M
.
Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice
.
Science
.
2012
;
338
(
6109
):
971
5
.
28.
Hikabe
O
,
Hamazaki
N
,
Nagamatsu
G
,
Obata
Y
,
Hirao
Y
,
Hamada
N
, et al
.
Reconstitution in vitro of the entire cycle of the mouse female germ line
.
Nature
.
2016
;
539
(
7628
):
299
303
.
29.
Ishikura
Y
,
Yabuta
Y
,
Ohta
H
,
Hayashi
K
,
Nakamura
T
,
Okamoto
I
, et al
.
In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells
.
Cell Rep
.
2016
;
17
(
10
):
2789
804
.
30.
Morohaku
K
,
Tanimoto
R
,
Sasaki
K
,
Kawahara-Miki
R
,
Kono
T
,
Hayashi
K
, et al
.
Complete in vitro generation of fertile oocytes from mouse primordial germ cells
.
Proc Natl Acad Sci USA
.
2016
;
113
(
32
):
9021
6
. .
31.
Yoshino
T
,
Suzuki
T
,
Nagamatsu
G
,
Yabukami
H
,
Ikegaya
M
,
Kishima
M
, et al
.
Generation of ovarian follicles from mouse pluripotent stem cells
.
Science
.
2021
;
373
(
6552
):
eabe0237
.
32.
Leaky
A
,
Weixiong
J
,
Kuhnert
F
,
Stuhlmann
H
.
Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation
.
J Exp Zool
.
1999
;
284
(
1)
:
67
81
.
33.
ten Berge
D
,
Koole
W
,
Fuerer
C
,
Fish
M
,
Eroglu
E
,
Nusse
R
.
Wnt signaling mediates self-organization and Axis formation in embryoid bodies
.
Cell Stem Cell
.
2008
;
3
(
5
):
508
18
.
34.
Baillie-Benson
P
,
Moris
N
,
Martinez Arias
A
.
Pluripotent stem cell models of early mammalian development
.
Curr Opin Cell Biol
.
2020
;
66
:
89
96
.
35.
Overeem
AW
,
Chang
YW
,
Moustakas
I
,
Roelse
CM
,
Hillenius
S
,
Helm
TVD
, et al
.
Efficient and scalable generation of primordial germ cells in 2D culture using basement membrane extract overlay
.
Cell Rep Methods
.
2023
;
3
(
6
):
100488
.
36.
Shahbazi
MN
,
Siggia
ED
,
Zernicka-Goetz
M
.
Self-organization of stem cells into embryos: a window on early mammalian development
.
Science
.
2019
;
364
(
6444
):
948
51
.
37.
Rossant
J
,
Tam
PPL
.
Opportunities and challenges with stem cell-based embryo models
.
Stem Cell Rep
.
2021
;
16
(
5
):
1031
8
.
38.
Bao
M
,
Cornwall-Scoones
J
,
Zernicka-Goetz
M
.
Stem-cell-based human and mouse embryo models
.
Curr Opin Genet Dev
.
2022
;
76
:
101970
.
39.
Chen
D
,
Clark
AT
.
Mitochondrial DNA selection in human germ cells
.
Nat Cell Biol
.
2018
;
20
(
2
):
118
20
.
40.
Jo
K
,
Teague
S
,
Chen
B
,
Khan
HA
,
Freeburne
E
,
Li
H
, et al
.
Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling
.
Elife
.
2022
;
11
:
e72811
.
41.
Zheng
Y
,
Xue
X
,
Shao
Y
,
Wang
S
,
Esfahani
SN
,
Li
Z
, et al
.
Controlled modelling of human epiblast and amnion development using stem cells
.
Nature
.
2019
;
573
(
7774
):
421
5
.
42.
Cooke
CB
,
Barrington
C
,
Baillie-Benson
P
,
Nichols
J
,
Moris
N
.
Gastruloid-derived primordial germ cell-like cells develop dynamically within integrated tissues
.
Development
.
2023
;
150
(
17
):
dev201790
.
43.
Karvas
RM
,
Zemke
JE
,
Ali
SS
,
Upton
E
,
Sane
E
,
Fischer
LA
, et al
.
3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages
.
Cell Stem Cell
.
2023
;
30
(
9
):
1148
65.e7
.
44.
Li
J
,
Zhu
Q
,
Cao
J
,
Liu
Y
,
Lu
Y
,
Sun
Y
, et al
.
Cynomolgus monkey embryo model captures gastrulation and early pregnancy
.
Cell Stem Cell
.
2023
;
30
(
4
):
362
77.e7
.
45.
Liu
L
,
Oura
S
,
Markham
Z
,
Hamilton
JN
,
Skory
RM
,
Li
L
, et al
.
Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids
.
Cell
.
2023
;
186
(
18
):
3776
92.e16
.
46.
Tarazi
S
,
Aguilera-Castrejon
A
,
Joubran
C
,
Ghanem
N
,
Ashouokhi
S
,
Roncato
F
, et al
.
Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs
.
Cell
.
2022
;
185
(
18
):
3290
306.e25
.
47.
Amadei
G
,
Handford
CE
,
Qiu
C
,
De Jonghe
J
,
Greenfeld
H
,
Tran
M
, et al
.
Embryo model completes gastrulation to neurulation and organogenesis
.
Nature
.
2022
;
610
(
7930
):
143
53
.
48.
Oldak
B
,
Wildschutz
E
,
Bondarenko
V
,
Comar
MY
,
Zhao
C
,
Aguilera-Castrejon
A
, et al
.
Complete human day 14 post-implantation embryo models from naïve ES cells
.
Nature
.
2023
;
622
(
7983
):
562
73
.
49.
Weatherbee
BAT
,
Gantner
CW
,
Iwamoto-Stohl
LK
,
Daza
RM
,
Hamazaki
N
,
Shendure
J
, et al
.
Pluripotent stem cell-derived model of the post-implantation human embryo
.
Nature
.
2023
;
622
(
7983
):
584
93
.
50.
Ai
Z
,
Niu
B
,
Yin
Y
,
Xiang
L
,
Shi
G
,
Duan
K
, et al
.
Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids
.
Cell Res
.
2023
;
33
(
9
):
661
78
.
51.
Alves-Lopes
JP
,
Wong
FCK
,
Tang
WWC
,
Gruhn
WH
,
Ramakrishna
NB
,
Jowett
GM
, et al
.
Specification of human germ cell fate with enhanced progression capability supported by hindgut organoids
.
Cell Rep
.
2023
;
42
(
1
):
111907
.
52.
Yamashiro
C
,
Sasaki
K
,
Yabuta
Y
,
Kojima
Y
,
Nakamura
T
,
Okamoto
I
, et al
.
Generation of human oogonia from induced pluripotent stem cells in vitro
.
Science
.
2018
;
362
(
6412
):
356
60
.
53.
Teague
S
,
Yao
LA
,
Heemskerk
I
.
The many dimensions of germline competence
.
Curr Opin Cell Biol
.
2023
;
85
:
102259
.
54.
Etoc
F
,
Metzger
J
,
Ruzo
A
,
Kirst
C
,
Yoney
A
,
Ozair
MZ
, et al
.
A balance between secreted inhibitors and edge sensing controls gastruloid self-organization
.
Dev Cell
.
2016
;
39
(
3
):
302
15
.
55.
Ohinata
Y
,
Ohta
H
,
Shigeta
M
,
Yamanaka
K
,
Wakayama
T
,
Saitou
M
.
A signaling principle for the specification of the germ cell lineage in mice
.
Cell
.
2009
;
137
(
3
):
571
84
. .
56.
Ohinata
Y
,
Payer
B
,
O’Carroll
D
,
Ancelin
K
,
Ono
Y
,
Sano
M
, et al
.
Blimp1 is a critical determinant of the germ cell lineage in mice
.
Nature
.
2005
;
436
(
7048
):
207
13
. .
57.
Saitou
M
,
Barton
SC
,
Surani
MA
.
A molecular programme for the specification of germ cell fate in mice
.
Nature
.
2002
;
418
(
6895
):
293
300
.
58.
Kobayashi
T
,
Zhang
H
,
Tang
WWC
,
Irie
N
,
Withey
S
,
Klisch
D
, et al
.
Principles of early human development and germ cell program from conserved model systems
.
Nature
.
2017
;
546
(
7658
):
416
20
.
59.
Bergmann
S
,
Penfold
CA
,
Slatery
E
,
Siriwardena
D
,
Drummer
C
,
Clark
S
, et al
.
Spatial profiling of early primate gastrulation in utero
.
Nature
.
2022
;
609
(
7925
):
136
43
.
60.
Castillo-Venzor
A
,
Penfold
CA
,
Morgan
MD
,
Tang
WW
,
Kobayashi
T
,
Wong
FC
, et al
.
Origin and segregation of the human germline
.
Life Sci Alliance
.
2023
;
6
(
8
):
e202201706
.
61.
Yu
L
,
Wei
Y
,
Sun
HX
,
Mahdi
AK
,
Pinzon Arteaga
CA
,
Sakurai
M
, et al
.
Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification
.
Cell Stem Cell
.
2021
;
28
(
3
):
550
67.e12
.
62.
Warmflash
A
,
Sorre
B
,
Etoc
F
,
Siggia
ED
,
Brivanlou
AH
.
A method to recapitulate early embryonic spatial patterning in human embryonic stem cells
.
Nat Methods
.
2014
;
11
(
8
):
847
54
.
63.
Deglincerti
A
,
Etoc
F
,
Guerra
MC
,
Martyn
I
,
Metzger
J
,
Ruzo
A
, et al
.
Self-organization of human embryonic stem cells on micropatterns
.
Nat Protoc
.
2016
;
11
(
11
):
2223
32
.
64.
Morgani
SM
,
Metzger
JJ
,
Nichols
J
,
Siggia
ED
,
Hadjantonakis
AK
.
Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning
.
Elife
.
2018
;
7
:
e32839
.
65.
Minn
KT
,
Fu
YC
,
He
S
,
Dietmann
S
,
George
SC
,
Anastasio
MA
, et al
.
High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human esc gastruloid cultures
.
Elife
.
2020
;
9
:
e59445
.
66.
Chhabra
S
,
Warmflash
A
.
BMP-treated human embryonic stem cells transcriptionally resemble amnion cells in the monkey embryo
.
Biol Open
.
2021
;
10
(
9
):
bio058617
.
67.
Kobayashi
T
,
Surani
MA
.
On the origin of the human germline
.
Development
.
2018
;
145
(
16
):
dev150433
.
68.
Senft
AD
,
Bikoff
EK
,
Robertson
EJ
,
Costello
I
.
Genetic dissection of Nodal and Bmp signalling requirements during primordial germ cell development in mouse
.
Nat Commun
.
2019
;
10
(
1
):
1089
.
69.
Senft
AD
,
Costello
I
,
King
HW
,
Mould
AW
,
Bikoff
EK
,
Robertson
EJ
.
Combinatorial smad2/3 activities downstream of nodal signaling maintain embryonic/extra-embryonic cell identities during lineage priming
.
Cell Rep
.
2018
;
24
(
8
):
1977
85.e7
.
70.
Zheng
Y
,
Yan
RZ
,
Sun
S
,
Kobayashi
M
,
Xiang
L
,
Yang
R
, et al
.
Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development
.
Cell Stem Cell
.
2022
;
29
(
9
):
1402
19.e8
.
71.
Moris
N
,
Anlas
K
,
Schroeder
J
,
Ghimire
S
,
Balayo
T
,
van den Brink
SC
, et al
.
Generating human gastruloids from human embryonic stem cells
.
Research Square Protocol Exchange
.
2020
. p.
1
16
.
72.
Beccari
L
,
Moris
N
,
Girgin
M
,
Turner
DA
,
Baillie-Johnson
P
,
Cossy
AC
, et al
.
Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids
.
Nature
.
2018
;
562
(
7726
):
272
6
.
73.
Van Den Brink
SC
,
Baillie-Johnson
P
,
Balayo
T
,
Hadjantonakis
AK
,
Nowotschin
S
,
Turner
DA
, et al
.
Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells
.
Development
.
2014
;
141
(
22
):
4231
42
.
74.
van den Brink
SC
,
Alemany
A
,
van Batenburg
V
,
Moris
N
,
Blotenburg
M
,
Vivié
J
, et al
.
Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids
.
Nature
.
2020
;
582
(
7812
):
405
9
.
75.
Turner
DA
,
Girgin
M
,
Alonso-Crisostomo
L
,
Trivedi
V
,
Baillie-Johnson
P
,
Glodowski
CR
, et al
.
Anteroposterior polarity and elongation in the absence of extraembryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids
.
Development
.
2017
;
144
(
21
):
3894
906
.
76.
Cermola
F
,
D’Aniello
C
,
Tatè
R
,
De Cesare
D
,
Martinez-Arias
A
,
Minchiotti
G
, et al
.
Gastruloid development competence discriminates different states of pluripotency
.
Stem Cell Rep
.
2021
;
16
(
2
):
354
69
.
77.
Morgani
SM
,
Hadjantonakis
AK
.
Quantitative analysis of signaling responses during mouse primordial germ cell specification
.
Biol Open
.
2021
;
10
(
5
):
bio058741
.
78.
Zhang
M
,
Reis
AH
,
Simunovic
M
.
Human embryoids: a new strategy of recreating the first steps of embryonic development in vitro
.
Semin Cell Dev Biol
.
2023
;
141
:
14
22
.
79.
Kagawa
H
,
Javali
A
,
Khoei
HH
,
Sommer
TM
,
Sestini
G
,
Novatchkova
M
, et al
.
Human blastoids model blastocyst development and implantation
.
Nature
.
2022
;
601
(
7894
):
600
5
.
80.
Sozen
B
,
Jorgensen
V
,
Weatherbee
BAT
,
Chen
S
,
Zhu
M
,
Zernicka-Goetz
M
.
Reconstructing aspects of human embryogenesis with pluripotent stem cells
.
Nat Commun
.
2021
;
12
(
1
):
5550
.
81.
Yanagida
A
,
Spindlow
D
,
Nichols
J
,
Dattani
A
,
Smith
A
,
Guo
G
.
Naive stem cell blastocyst model captures human embryo lineage segregation
.
Cell Stem Cell
.
2021
;
28
(
6
):
1016
22.e4
.
82.
Rivron
NC
,
Frias-Aldeguer
J
,
Vrij
EJ
,
Boisset
JC
,
Korving
J
,
Vivié
J
, et al
.
Blastocyst-like structures generated solely from stem cells
.
Nature
.
2018
;
557
(
7703
):
106
11
.
83.
Sozen
B
,
Amadei
G
,
Cox
A
,
Wang
R
,
Na
E
,
Czukiewska
S
, et al
.
Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures
.
Nat Cell Biol
.
2018
;
20
(
8
):
979
89
.
84.
Dupont
C
,
Schäffers
OJM
,
Tan
BF
,
Merzouk
S
,
Bindels
EM
,
Zwijsen
A
, et al
.
Efficient generation of ETX embryoids that recapitulate the entire window of murine egg cylinder development
.
Sci Adv
.
2023
;
9
(
3
):
eadd2913
.
85.
Hislop
J
,
Alavi
A
,
Song
Q
,
Schoenberger
R
,
Kamyar
KF
,
LeGraw
R
, et al
.
Modelling human post-implantation development via extra-embryonic niche engineering
.
bioRxiv
.
2023
:
2023.06.15.545118
.
86.
Bedzhov
I
,
Zernicka-Goetz
M
.
Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation
.
Cell
.
2014
;
156
(
5
):
1032
44
.
87.
Sun
Y
,
Chen
CS
,
Fu
J
.
Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment
.
Annu Rev Biophys
.
2012
;
41
(
1
):
519
42
.
88.
Harrison
SE
,
Sozen
B
,
Christodoulou
N
,
Kyprianou
C
,
Zernicka-Goetz
M
.
Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro
.
Science
.
2017
;
35
(
66334
):
eaal1810
.
89.
Esfahani
SN
,
Zheng
Y
,
Arabpour
A
,
Irizarry
AMR
,
Kobayashi
N
,
Xue
X
, et al
.
Derivation of human primordial germ cell-like cells in an embryonic-like culture
.
Nat Commun
.
2024
;
15
(
1
):
167
.
90.
Yamaguchi
S
,
Hong
K
,
Liu
R
,
Inoue
A
,
Shen
L
,
Zhang
K
, et al
.
Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming
.
Cell Res
.
2013
;
23
(
3
):
329
39
.
91.
Tang
WWC
,
Dietmann
S
,
Irie
N
,
Leitch
HG
,
Floros
VI
,
Bradshaw
CR
, et al
.
A unique gene regulatory network resets the human germline epigenome for development
.
Cell
.
2015
;
161
(
6
):
1453
67
.
92.
Ramakrishna
NB
,
Murison
K
,
Miska
EA
,
Leitch
HG
.
Epigenetic regulation during primordial germ cell development and differentiation
.
Sex Dev
.
2021
;
15
(
5–6
):
411
31
.
93.
Kanamori
M
,
Oikawa
K
,
Tanemura
K
,
Hara
K
.
Mammalian germ cell migration during development, growth, and homeostasis
.
Reprod Med Biol
.
2019
;
18
(
3
):
247
55
.
94.
Møllgård
K
,
Jespersen
A
,
Lutterodt
MC
,
Yding Andersen
C
,
Høyer
PE
,
Byskov
AG
.
Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge
.
Mol Hum Reprod
.
2010
;
16
(
9
):
621
31
.
95.
Høyer
PE
,
Byskov
AG
,
Møllgård
K
.
Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries
.
Mol Cell Endocrinol
.
2005
;
234
(
1–2
):
1
10
.
96.
Wolff
E
,
Suplicki
MM
,
Behr
R
.
Primordial germ cells do not migrate along nerve fibres in marmoset monkey and mouse embryos
.
Reproduction
.
2019
;
157
(
1
):
101
9
.
97.
Nguyen
DH
,
Jaszczak
RG
,
Laird
DJ
.
Heterogeneity of primordial germ cells
.
Curr Top Dev Biol
.
2019
;
135
:
155
201
.
98.
Mayère
C
,
Neirijnck
Y
,
Sararols
P
,
Rands
CM
,
Stévant
I
,
Kühne
F
, et al
.
Single-cell transcriptomics reveal temporal dynamics of critical regulators of germ cell fate during mouse sex determination
.
FASEB
.
2021
;
35
(
4
):
e21452
.
99.
Clark
JM
,
Eddy
EM
.
Fine structural observations on the origin and associations of primordial germ cells of the mouse
.
Dev Biol
.
1975
;
47
(
1
):
136
55
.
100.
McCracken
KW
,
Howell
JC
,
Wells
JM
,
Spence
JR
.
Generating human intestinal tissue from pluripotent stem cells in vitro
.
Nat Protoc
.
2011
;
6
(
12
):
1920
8
.
101.
Spence
JR
,
Mayhew
CN
,
Rankin
SA
,
Kuhar
MF
,
Vallance
JE
,
Tolle
K
, et al
.
Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro
.
Nature
.
2011
;
470
(
7332
):
105
9
.
102.
Ara
T
,
Nakamura
Y
,
Egawa
T
,
Sugiyama
T
,
Abe
K
,
Kishimoto
T
, et al
.
Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1)
.
Proc Natl Acad Sci USA
.
2003
;
100
(
9
):
5319
23
.
103.
Bendel-Stenzel
MR
,
Gomperts
M
,
Anderson
R
,
Heasman
J
,
Wylie
C
.
The role of cadherins during primordial germ cell migration and early gonad formation in the mouse
.
Mech Dev
.
2000
;
91
(
1–2
):
143
52
.
104.
McLaren
A
.
Primordial germ cells in the mouse
.
Dev Biol
.
2003
;
262
(
1
):
1
15
.
105.
Spiller
C
,
Koopman
P
,
Bowles
J
.
Sex determination in the mammalian germline
.
Annu Rev Genet
.
2017
;
51
:
265
85
.
106.
Chuma
S
,
Kanatsu-Shinohara
M
,
Inoue
K
,
Ogonuki
N
,
Miki
H
,
Toyokuni
S
, et al
.
Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis
.
Development
.
2005
;
132
(
1
):
117
22
.
107.
Oikawa
M
,
Kobayashi
H
,
Sanbo
M
,
Mizuno
N
,
Iwatsuki
K
,
Takashima
T
, et al
.
Functional primordial germ cell–like cells from pluripotent stem cells in rats
.
Science
.
2022
;
376
(
6589
):
176
9
.
108.
Yang
S
,
Liu
Z
,
Wu
S
,
Zou
L
,
Cao
Y
,
Xu
H
, et al
.
Meiosis resumption in human primordial germ cells from induced pluripotent stem cells by in vitro activation and reconstruction of ovarian nests
.
Stem Cell Res Ther
.
2022
;
13
(
1
):
339
.
109.
Zhou
Q
,
Wang
M
,
Yuan
Y
,
Wang
X
,
Fu
R
,
Wan
H
, et al
.
Complete meiosis from embryonic stem cell-derived germ cells in vitro
.
Cell Stem Cell
.
2016
;
18
(
3
):
330
40
.
110.
Hwang
YS
,
Suzuki
S
,
Seita
Y
,
Ito
J
,
Sakata
Y
,
Aso
H
, et al
.
Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells
.
Nat Commun
.
2020
;
11
(
1
):
5656
17
.
111.
Bowles
J
,
Knight
D
,
Smith
C
,
Wilhelm
D
,
Richman
J
,
Mamiya
S
, et al
.
Retinoid signaling determines germ cell fate in mice
.
Science
.
2006
;
312
(
5773
):
596
600
.
112.
Bowles
J
,
Feng
CW
,
Miles
K
,
Ineson
J
,
Spiller
C
,
Koopman
P
.
ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries
.
Nat Commun
.
2016
;
7
:
10845
.
113.
Kumar
S
,
Chatzi
C
,
Brade
T
,
Cunningham
TJ
,
Zhao
X
,
Duester
G
.
Sex-specific timing of meiotic initiation is regulated by Cyp26b1 independent of retinoic acid signalling
.
Nat Commun
.
2011
;
2
:
151
.
114.
Gafni
O
,
Weinberger
L
,
AlFatah Mansour
A
,
Manor
YS
,
Chomsky
E
,
Dalit
B-Y
, et al
.
Derivation of novel human ground state naive pluripotent stem cells
.
Nature
.
2013
;
504
(
7479
):
282
.
You do not currently have access to this content.