Background: Volumetric muscle loss (VML) causes pain and disability in patients who sustain traumatic injury from invasive surgical procedures, vehicle accidents, and battlefield wounds. Clinical treatment of VML injuries is challenging, and although options such as free-flap autologous grafting exist, patients inevitably develop excessive scarring and fatty infiltration, leading to muscle weakness and reduced quality of life. Summary: New bioengineering approaches, including cell therapy, drug delivery, and biomaterial implantation, have emerged as therapies to restore muscle function and structure to pre-injury levels. Of these, acellular biomaterial implants have attracted wide interest owing to their broad potential design space and high translational potential as medical devices. Implantable biomaterials fill the VML defect and create a conduit that permits the migration of regenerative cells from the intact muscle tissue to the injury site. Invading cells and regenerating myofibers are sensitive to the biomaterial’s structural and biochemical properties, which can play instructive roles in guiding cell fate and organization into functional tissue. Key Messages: Many diverse biomaterials have been developed for skeletal muscle regeneration with variations in biophysical and biochemical properties, and while many have been tested in vitro, few have proven their regenerative potential in clinically relevant in vivo models. Here, we provide an overview of recent advances in the design, fabrication, and application of acellular biomaterials made from synthetic or natural materials for the repair of VML defects. We specifically focus on biomaterials with rationally designed structural (i.e., porosity, topography, alignment) and biochemical (i.e., proteins, peptides, growth factors) components, highlighting their regenerative effects in clinically relevant VML models.

1.
Belmont
PJ
Jr
,
McCriskin
BJ
,
Hsiao
MS
,
Burks
R
,
Nelson
KJ
,
Schoenfeld
AJ
.
The nature and incidence of musculoskeletal combat wounds in Iraq and Afghanistan (2005–2009)
.
J Orthop Trauma
.
2013
;
27
(
5
):
e107
13
. .
2.
Anderson
SE
,
Han
WM
,
Srinivasa
V
,
Mohiuddin
M
,
Ruehle
MA
,
Moon
JY
,
.
Determination of a critical size threshold for volumetric muscle loss in the mouse quadriceps
.
Tissue Eng C Methods
.
2019
;
25
(
2
):
59
70
. .
3.
Yin
H
,
Price
F
,
Rudnicki
MA
.
Satellite cells and the muscle stem cell niche
.
Physiol Rev
.
2013
;
93
(
1
):
23
67
. .
4.
Greising
SM
,
Rivera
JC
,
Goldman
SM
,
Watts
A
,
Aguilar
CA
,
Corona
BT
.
Unwavering pathobiology of volumetric muscle loss injury
.
Sci Rep
.
2017
;
7
(
1
):
13179
14
. .
5.
Dolan
CP
,
Motherwell
JM
,
Franco
SR
,
Janakiram
NB
,
Valerio
MS
,
Goldman
SM
,
.
Evaluating the potential use of functional fibrosis to facilitate improved outcomes following volumetric muscle loss injury
.
Acta Biomater
.
2022
;
140
:
379
88
. .
6.
Dibbs
R
,
Grome
L
,
Pederson
WC
.
Free tissue transfer for upper extremity reconstruction
.
Semin Plast Surg
.
2019
;
33
(
1
):
17
23
. .
7.
Qazi
TH
,
Mooney
DJ
,
Pumberger
M
,
Geißler
S
,
Duda
GN
.
Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends
.
Biomaterials
.
2015
;
53
:
502
21
. .
8.
Gilbert-Honick
J
,
Iyer
SR
,
Somers
SM
,
Takasuka
H
,
Lovering
RM
,
Wagner
KR
,
.
Engineering 3D skeletal muscle primed for neuromuscular regeneration following volumetric muscle loss
.
Biomaterials
.
2020
;
255
:
120154
. .
9.
Mintz
EL
,
Passipieri
JA
,
Franklin
IR
,
Toscano
VM
,
Afferton
EC
,
Sharma
PR
,
.
Long-term evaluation of functional outcomes following rat volumetric muscle loss injury and repair
.
Tissue Eng A
.
2020
;
26
(
3–4
):
140
56
. .
10.
Hussey
GS
,
Dziki
JL
,
Badylak
SF
.
Extracellular matrix-based materials for regenerative medicine
.
Nat Rev Mater
.
2018
;
3
(
7
):
159
73
. .
11.
Dziki
J
,
Badylak
S
,
Yabroudi
M
,
Sicari
B
,
Ambrosio
F
,
Stearns
K
,
.
An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study
.
Npj Regen Med
.
2016
;
1
(
1
):
16008
12
. .
12.
Han
WM
,
Anderson
SE
,
Mohiuddin
M
,
Barros
D
,
Nakhai
SA
,
Shin
E
,
.
Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma
.
Sci Adv
.
2018
;
4
(
8
):
eaar4008
. .
13.
Cosgrove
BD
,
Gilbert
PM
,
Porpiglia
E
,
Mourkioti
F
,
Lee
SP
,
Corbel
SY
,
.
Rejuvenation of the muscle stem cell population restores strength to injured aged muscles
.
Nat Med
.
2014
;
20
(
3
):
255
64
. .
14.
Maleitzke
T
,
Reinke
P
,
Agres
AN
,
Alves
SA
,
Akyüz
L
,
Fleckenstein
FN
,
.
Intramuscular and intratendinous placenta-derived mesenchymal stromal-like cell treatment of a chronic quadriceps tendon rupture
.
J Cachexia Sarcopenia Muscle
.
2022
;
13
(
1
):
434
42
. .
15.
Sicherer
ST
,
Venkatarama
RS
,
Grasman
JM
.
Recent trends in injury models to study skeletal muscle regeneration and repair
.
Bioengineering
.
2020
;
7
(
3
):
76
. .
16.
Hardy
D
,
Besnard
A
,
Latil
M
,
Jouvion
G
,
Briand
D
,
Thépenier
C
,
.
Comparative study of injury models for studying muscle regeneration in mice
.
PLoS One
.
2016
;
11
(
1
):
e0147198
. .
17.
Corona
BT
,
Wenke
JC
,
Ward
CL
.
Pathophysiology of volumetric muscle loss injury
.
Cells Tissues Organs
.
2016
;
202
(
3–4
):
180
8
. .
18.
Christman
KL
.
Regenerative medicine: biomaterials for tissue repair
.
Science
.
2019
;
363
(
6425
):
340
1
. .
19.
Testa
S
,
Fornetti
E
,
Fuoco
C
,
Sanchez-Riera
C
,
Rizzo
F
,
Ciccotti
M
,
.
The war after war: volumetric muscle loss incidence, implication, current therapies and emerging reconstructive strategies, a comprehensive review
.
Biomedicines
.
2021
;
9
(
5
):
564
. .
20.
Qazi
TH
,
Duda
GN
,
Ort
MJ
,
Perka
C
,
Geissler
S
,
Winkler
T
.
Cell therapy to improve regeneration of skeletal muscle injuries
.
J Cachexia Sarcopenia Muscle
.
2019
;
10
(
3
):
501
16
. .
21.
Kwee
BJ
,
Mooney
DJ
.
Biomaterials for skeletal muscle tissue engineering
.
Curr Opin Biotechnol
.
2017
;
47
:
16
22
. .
22.
Smoak
MM
,
Mikos
AG
.
Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome
.
Mater Today Bio
.
2020
;
7
:
100069
. .
23.
Khodabukus
A
,
Guyer
T
,
Moore
AC
,
Stevens
MM
,
Guldberg
RE
,
Bursac
N
.
Translating musculoskeletal bioengineering into tissue regeneration therapies
.
Sci Transl Med
.
2022
;
14
(
666
):
eabn9074
. .
24.
Judson
RN
,
Rossi
FMV
.
Towards stem cell therapies for skeletal muscle repair
.
Npj Regen Med
.
2020
;
5
(
1
):
10
. .
25.
Jana
S
,
Levengood
SKL
,
Zhang
M
.
Anisotropic materials for skeletal-muscle-tissue engineering
.
Adv Mater
.
2016
;
28
(
48
):
10588
612
. .
26.
Clark
A
,
Kulwatno
J
,
Kanovka
SS
,
McKinley
TO
,
Potter
BK
,
Goldman
SM
,
.
In situ forming biomaterials as muscle void fillers for the provisional treatment of volumetric muscle loss injuries
.
Mater Today Bio
.
2023
;
22
:
100781
. .
27.
Nakayama
KH
,
Alcazar
C
,
Yang
G
,
Quarta
M
,
Paine
P
,
Doan
L
,
.
Rehabilitative exercise and spatially patterned nanofibrillar scaffolds enhance vascularization and innervation following volumetric muscle loss
.
Npj Regen Med
.
2018
;
3
(
1
):
16
. .
28.
Xu
Y
,
Chen
X
,
Qian
Y
,
Tang
H
,
Song
J
,
Qu
X
,
.
Melatonin-based and biomimetic scaffold as muscle–ECM implant for guiding myogenic differentiation of volumetric muscle loss
.
Adv Funct Mater
.
2020
;
30
(
27
):
2002378
. .
29.
Lee
H
,
Ju
YM
,
Kim
I
,
Elsangeedy
E
,
Lee
JH
,
Yoo
JJ
,
.
A novel decellularized skeletal muscle-derived ECM scaffolding system for in situ muscle regeneration
.
Methods
.
2020
;
171
:
77
85
. .
30.
Xue
J
,
Wu
T
,
Dai
Y
,
Xia
Y
.
Electrospinning and electrospun nanofibers: methods, materials, and applications
.
Chem Rev
.
2019
;
119
(
8
):
5298
415
. .
31.
Liu
Y
,
Zhou
G
,
Liu
Z
,
Guo
M
,
Jiang
X
,
Taskin
MB
,
.
Mussel inspired polynorepinephrine functionalized electrospun polycaprolactone microfibers for muscle regeneration
.
Sci Rep
.
2017
;
7
(
1
):
8197
. .
32.
Panayi
AC
,
Smit
L
,
Hays
N
,
Udeh
K
,
Endo
Y
,
Li
B
,
.
A porous collagen-GAG scaffold promotes muscle regeneration following volumetric muscle loss injury
.
Wound Repair Regen
.
2020
;
28
(
1
):
61
74
. .
33.
Mungenast
L
,
Nieminen
R
,
Gaiser
C
,
Faia-Torres
AB
,
Rühe
J
,
Suter-Dick
L
.
Electrospun decellularized extracellular matrix scaffolds promote the regeneration of injured neurons
.
Biomater Biosyst
.
2023
;
11
:
100081
. .
34.
Patel
KH
,
Talovic
M
,
Dunn
AJ
,
Patel
A
,
Vendrell
S
,
Schwartz
M
,
.
Aligned nanofibers of decellularized muscle extracellular matrix for volumetric muscle loss
.
J Biomed Mater Res B Appl Biomater
.
2020
;
108
(
6
):
2528
37
. .
35.
Zhu
C
,
Karvar
M
,
Koh
DJ
,
Sklyar
K
,
Endo
Y
,
Quint
J
,
.
Acellular collagen–glycosaminoglycan matrix promotes functional recovery in a rat model of volumetric muscle loss
.
Regen Med
.
2023
;
18
(
8
):
623
33
. .
36.
Chen
XK
,
Walters
TJ
.
Muscle-derived decellularised extracellular matrix improves functional recovery in a rat latissimus dorsi muscle defect model
.
J Plast Reconstr Aesthet Surg
.
2013
;
66
(
12
):
1750
8
. .
37.
Takanari
K
,
Hong
Y
,
Hashizume
R
,
Huber
A
,
Amoroso
NJ
,
D’Amore
A
,
.
Abdominal wall reconstruction by a regionally distinct biocomposite of extracellular matrix digest and a biodegradable elastomer
.
J Tissue Eng Regen Med
.
2016
;
10
(
9
):
748
61
. .
38.
Ju
YM
,
Atala
A
,
Yoo
JJ
,
Lee
SJ
.
In situ regeneration of skeletal muscle tissue through host cell recruitment
.
Acta Biomater
.
2014
;
10
(
10
):
4332
9
. .
39.
Hogan
KJ
,
Smoak
MM
,
Koons
GL
,
Perez
MR
,
Bedell
ML
,
Jiang
EY
,
.
Bioinspired electrospun decellularized extracellular matrix scaffolds promote muscle regeneration in a rat skeletal muscle defect model
.
J Biomed Mater Res
.
2022
;
110
(
5
):
1090
100
. .
40.
Dunn
A
,
Haas
G
,
Madsen
J
,
Ziemkiewicz
N
,
Au
J
,
Johnson
D
,
.
Biomimetic sponges improve functional muscle recovery following composite trauma
.
J Orthop Res
.
2022
;
40
(
5
):
1039
52
. .
41.
Johnson
D
,
Dunn
A
,
Haas
G
,
Madsen
J
,
Robinson
J
,
Tobo
C
,
.
Treatment of volumetric muscle loss in female rats with biomimetic sponges
.
Eur Cell Mater
.
2023
;
46
:
24
39
. .
42.
Haas
GJ
,
Dunn
AJ
,
Marcinczyk
M
,
Talovic
M
,
Schwartz
M
,
Scheidt
R
,
.
Biomimetic sponges for regeneration of skeletal muscle following trauma
.
J Biomed Mater Res
.
2019
;
107
(
1
):
92
103
. .
43.
Brouwer
KM
,
Daamen
WF
,
van Lochem
N
,
Reijnen
D
,
Wijnen
RMH
,
van Kuppevelt
TH
.
Construction and in vivo evaluation of a dual layered collagenous scaffold with a radial pore structure for repair of the diaphragm
.
Acta Biomater
.
2013
;
9
(
6
):
6844
51
. .
44.
Kozan
NG
,
Caswell
S
,
Patel
M
,
Grasman
JM
.
Aligned collagen sponges with tunable pore size for skeletal muscle tissue regeneration
.
J Funct Biomater
.
2023
;
14
(
11
):
533
. .
45.
Basurto
IM
,
Muhammad
SA
,
Gardner
GM
,
Christ
GJ
,
Caliari
SR
.
Controlling scaffold conductivity and pore size to direct myogenic cell alignment and differentiation
.
J Biomed Mater Res
.
2022
;
110
(
10
):
1681
94
. .
46.
Zhang
J
,
Hu
ZQ
,
Turner
NJ
,
Teng
SF
,
Cheng
WY
,
Zhou
HY
,
.
Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template
.
Biomaterials
.
2016
;
89
:
114
26
. .
47.
Zhu
M
,
Li
W
,
Dong
X
,
Yuan
X
,
Midgley
AC
,
Chang
H
,
.
In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration
.
Nat Commun
.
2019
;
10
(
1
):
4620
. .
48.
Kiratitanaporn
W
,
Berry
DB
,
Mudla
A
,
Fried
T
,
Lao
A
,
Yu
C
,
.
3D printing a biocompatible elastomer for modeling muscle regeneration after volumetric muscle loss
.
Biomater Adv
.
2022
;
142
:
213171
. .
49.
Behre
A
,
Tashman
JW
,
Dikyol
C
,
Shiwarski
DJ
,
Crum
RJ
,
Johnson
SA
,
.
3D bioprinted patient-specific extracellular matrix scaffolds for soft tissue defects
.
Adv Healthc Mater
.
2022
;
11
(
24
):
2200866
. .
50.
Quint
JP
,
Mostafavi
A
,
Endo
Y
,
Panayi
A
,
Russell
CS
,
Nourmahnad
A
,
.
In vivo printing of nanoenabled scaffolds for the treatment of skeletal muscle injuries
.
Adv Healthc Mater
.
2021
;
10
(
10
):
1
13
. .
51.
Russell
CS
,
Mostafavi
A
,
Quint
JP
,
Panayi
AC
,
Baldino
K
,
Williams
TJ
,
.
In situ printing of adhesive hydrogel scaffolds for the treatment of skeletal muscle injuries
.
ACS Appl Bio Mater
.
2020
;
3
(
3
):
1568
79
. .
52.
Eugenis
I
,
Wu
D
,
Hu
C
,
Chiang
G
,
Huang
NF
,
Rando
TA
.
Scalable macroporous hydrogels enhance stem cell treatment of volumetric muscle loss
.
Biomaterials
.
2022
;
290
:
121818
. .
53.
Tanner
GI
,
Schiltz
L
,
Figueiredo
ML
,
Qazi
TH
.
Granular hydrogels improve myogenic invasion and repair after volumetric muscle loss
.
bioRxiv
.
2023
:
2023
.
54.
Wang
L
,
Li
T
,
Wang
Z
,
Hou
J
,
Liu
S
,
Yang
Q
,
.
Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration
.
Biomaterials
.
2022
;
285
:
121537
. .
55.
Gattazzo
F
,
De Maria
C
,
Rimessi
A
,
Donà
S
,
Braghetta
P
,
Pinton
P
,
.
Gelatin–genipin-based biomaterials for skeletal muscle tissue engineering
.
J Biomed Mater Res B Appl Biomater
.
2018
;
106
(
8
):
2763
77
. .
56.
Shi
Y
,
Zhang
X
,
Liu
R
,
Shao
X
,
Zhao
Y
,
Gu
Z
,
.
Self-curling 3D oriented scaffolds from fish scales for skeletal muscle regeneration
.
Biomater Res
.
2022
;
26
(
1
):
87
. .
57.
Sicari
BM
,
Rubin
JP
,
Dearth
CL
,
Wolf
MT
,
Ambrosio
F
,
Boninger
M
,
.
An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss
.
Sci Transl Med
.
2014
;
6
(
234
):
234ra58
. .
58.
Corona
BT
,
Wu
X
,
Ward
CL
,
McDaniel
JS
,
Rathbone
CR
,
Walters
TJ
.
The promotion of a functional fibrosis in skeletal muscle with volumetric muscle loss injury following the transplantation of muscle-ECM
.
Biomaterials
.
2013
;
34
(
13
):
3324
35
. .
59.
Aurora
A
,
Roe
JL
,
Corona
BT
,
Walters
TJ
.
An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury
.
Biomaterials
.
2015
;
67
:
393
407
. .
60.
Lee
K
,
Hong
KS
,
Park
W
.
Implantation of decellularized extracellular matrix with resistance training effectively repairs a volumetric muscle loss
.
Exerc Sci
.
2022
;
31
(
3
):
392
402
. .
61.
Sadtler
K
,
Estrellas
K
,
Allen
BW
,
Wolf
MT
,
Fan
H
,
Tam
AJ
,
.
Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells
.
Science
.
2016
;
352
(
6283
):
366
70
. .
62.
Magarotto
F
,
Sgrò
A
,
Dorigo Hochuli
AH
,
Andreetta
M
,
Grassi
M
,
Saggioro
M
,
.
Muscle functional recovery is driven by extracellular vesicles combined with muscle extracellular matrix in a volumetric muscle loss murine model
.
Biomaterials
.
2021
;
269
:
120653
. .
63.
Novakova
SS
,
Rodriguez
BL
,
Vega-Soto
EE
,
Nutter
GP
,
Armstrong
RE
,
Macpherson
PCD
,
.
Repairing volumetric muscle loss in the ovine peroneus tertius following a 3-month recovery
.
Tissue Eng Part A
.
2020
;
26
(
15–16
):
837
51
. .
64.
Corona
BT
,
Greising
SM
.
Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration
.
Biomaterials
.
2016
;
104
:
238
46
. .
65.
Tonti
OR
,
Larson
H
,
Lipp
SN
,
Luetkemeyer
CM
,
Makam
M
,
Vargas
D
,
.
Tissue-specific parameters for the design of ECM-mimetic biomaterials
.
Acta Biomater
.
2021
;
132
:
83
102
. .
66.
Ziemkiewicz
N
,
Hilliard
GM
,
Dunn
AJ
,
Madsen
J
,
Haas
G
,
Au
J
,
.
Laminin-111-Enriched fibrin hydrogels enhance functional muscle regeneration following trauma
.
Tissue Eng Part A
.
2022
;
28
(
7–8
):
297
311
. .
67.
Narayanan
N
,
Jia
Z
,
Kim
KH
,
Kuang
L
,
Lengemann
P
,
Shafer
G
,
.
Biomimetic glycosaminoglycan-based scaffolds improve skeletal muscle regeneration in a Murine volumetric muscle loss model
.
Bioact Mater
.
2021
;
6
(
4
):
1201
13
. .
68.
Eren Cimenci
C
,
Uzunalli
G
,
Uysal
O
,
Yergoz
F
,
Karaca Umay
E
,
Guler
MO
,
.
Laminin mimetic peptide nanofibers regenerate acute muscle defect
.
Acta Biomater
.
2017
;
60
:
190
200
. .
69.
Ascenzi
F
,
Barberi
L
,
Dobrowolny
G
,
Villa Nova Bacurau
A
,
Nicoletti
C
,
Rizzuto
E
,
.
Effects of IGF-1 isoforms on muscle growth and sarcopenia
.
Aging Cell
.
2019
;
18
(
3
):
e12954
. .
70.
Syverud
BC
,
VanDusen
KW
,
Larkin
LM
.
Growth factors for skeletal muscle tissue engineering
.
Cells Tissues Organs
.
2016
;
202
(
3–4
):
169
79
. .
71.
Passipieri
JA
,
Baker
HB
,
Siriwardane
M
,
Ellenburg
MD
,
Vadhavkar
M
,
Saul
JM
,
.
Keratin hydrogel enhances in vivo skeletal muscle function in a rat model of volumetric muscle loss
.
Tissue Eng Part A
.
2017
;
23
(
11–12
):
556
71
. .
72.
Baker
HB
,
Passipieri
JA
,
Siriwardane
M
,
Ellenburg
MD
,
Vadhavkar
M
,
Bergman
CR
,
.
Cell and growth factor-loaded keratin hydrogels for treatment of volumetric muscle loss in a mouse model
.
Tissue Eng Part A
.
2017
;
23
(
11–12
):
572
84
. .
73.
Grasman
JM
,
Do
DM
,
Page
RL
,
Pins
GD
.
Rapid release of growth factors regenerates force output in volumetric muscle loss injuries
.
Biomaterials
.
2015
;
72
:
49
60
. .
74.
Hu
C
,
Ayan
B
,
Chiang
G
,
Chan
AHP
,
Rando
TA
,
Huang
NF
.
Comparative effects of basic fibroblast growth factor delivery or voluntary exercise on muscle regeneration after volumetric muscle loss
.
Bioengineering
.
2022
;
9
(
1
):
37
. .
75.
Doukas
J
,
Blease
K
,
Craig
D
,
Ma
C
,
Chandler
LA
,
Sosnowski
BA
,
.
Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle
.
Mol Ther
.
2002
;
5
(
5 Pt 1
):
517
27
. .
76.
Zaitseva
TS
,
Alcazar
C
,
Zamani
M
,
Hou
L
,
Sawamura
S
,
Yakubov
E
,
.
Aligned nanofibrillar scaffolds for controlled delivery of modified mRNA
.
Tissue Eng Part A
.
2019
;
25
(
1–2
):
121
30
. .
77.
Dienes
J
,
Browne
S
,
Farjun
B
,
Amaral Passipieri
J
,
Mintz
EL
,
Killian
G
,
.
Semisynthetic hyaluronic acid-based hydrogel promotes recovery of the injured tibialis anterior skeletal muscle form and function
.
ACS Biomater Sci Eng
.
2021
;
7
(
4
):
1587
99
. .
78.
Cross
LM
,
Carrow
JK
,
Ding
X
,
Singh
KA
,
Gaharwar
AK
.
Sustained and prolonged delivery of protein therapeutics from two-dimensional nanosilicates
.
ACS Appl Mater Inter
.
2019
;
11
(
7
):
6741
50
. .
79.
Endo
Y
,
Samandari
M
,
Karvar
M
,
Mostafavi
A
,
Quint
J
,
Rinoldi
C
,
.
Aerobic exercise and scaffolds with hierarchical porosity synergistically promote functional recovery post volumetric muscle loss
.
Biomaterials
.
2023
;
296
:
122058
. .
80.
West
C
,
Tobo
C
,
Au
J
,
Johnson
D
,
Mottaleb
MA
,
Robinson
J
,
.
Combined application of biosponges and an antifibrotic agent for the treatment of volumetric muscle loss
.
Am J Physiol Physiol
.
2023
;
324
(
6
):
C1341
52
. .
81.
Kossen
K
,
Schaefer
C
,
Lim
S
,
Michener
M
,
Ruminiski
P
,
Griggs
D
,
.
IDL-2965: a selective, highly-potent, oral Integrin antagonist for IPF
.
Eur Respir J
.
2019
;
54
(
Suppl 63
):
PA5374
.
82.
Wang
Y
,
Wei
X
,
Wang
L
,
Qian
Z
,
Liu
H
,
Fan
Y
.
Quercetin-based composite hydrogel promotes muscle tissue regeneration through macrophage polarization and oxidative stress attenuation
.
Compos B Eng
.
2022
;
247
:
110311
. .
83.
Tidball
JG
.
Regulation of muscle growth and regeneration by the immune system
.
Nat Rev Immunol
.
2017
;
17
(
3
):
165
78
. .
84.
Haas
G
,
Dunn
A
,
Madsen
J
,
Genovese
P
,
Chauvin
H
,
Au
J
,
.
Biomimetic sponges improve muscle structure and function following volumetric muscle loss
.
J Biomed Mater Res
.
2021
;
109
(
11
):
2280
93
. .
85.
Lokwani
R
,
Josyula
A
,
Ngo
TB
,
DeStefano
S
,
Fertil
D
,
Faust
M
,
.
Pro-regenerative biomaterials recruit immunoregulatory dendritic cells after traumatic injury
.
Nat Mater
.
2024
;
23
(
1
):
147
57
. .
86.
Huleihel
L
,
Dziki
JL
,
Bartolacci
JG
,
Rausch
T
,
Scarritt
ME
,
Cramer
MC
,
.
Macrophage phenotype in response to ECM bioscaffolds
.
Semin Immunol
.
2017
;
29
:
2
13
. .
87.
Carleton
MM
,
Sefton
MV
.
Injectable and degradable methacrylic acid hydrogel alters macrophage response in skeletal muscle
.
Biomaterials
.
2019
;
223
:
119477
. .
88.
Carleton
MM
,
Locke
M
,
Sefton
MV
.
Methacrylic acid-based hydrogels enhance skeletal muscle regeneration after volumetric muscle loss in mice
.
Biomaterials
.
2021
;
275
:
120909
. .
89.
Ibáñez-Fonseca
A
,
Santiago Maniega
S
,
Gorbenko del Blanco
D
,
Catalán Bernardos
B
,
Vega Castrillo
A
,
Álvarez Barcia
ÁJ
,
.
Elastin-like recombinamer hydrogels for improved skeletal muscle healing through modulation of macrophage polarization
.
Front Bioeng Biotechnol
.
2020
;
8
:
413
. .
You do not currently have access to this content.