Introduction: The decellularized extracellular matrix (dECM) from ovarian tissue could be the best scaffold for the development of a transplantable artificial ovary. Typically, dECM from ovarian tissue has been obtained using sodium dodecyl sulfate (SDS), at a concentration of 1% for 24 h. However, SDS can leave residues in the tissue, which may be toxic to the seeded cells. This study aimed to obtain dECM from bovine ovarian tissue using SDS and NaOH at a minimum concentration in the shortest incubation time. Methods: The respective SDS and NaOH concentrations investigated were 1% and 0.2 m; 0.5% and 0.1 m; 0.1% and 0.02 m; and 0.05% and 0.01 m, with 24-, 12-, and 6-h incubation periods. After the incubation time, the tissue was washed in 50 mL of distilled water for 6 h. Results: Histological analysis confirmed decellularization and showed the conservation of collagen fibers in all samples following treatment. Furthermore, the lowest SDS and NaOH concentrations that showed no DNA remaining during electrophoresis analysis were 0.1% and 0.02 m when incubated for 24 and 12 h. DNA quantification resulted in <0.2 ng DNA/mg ovarian tissue using these protocols. Additionally, the coculture of dECM (obtained by 0.1% SDS and 0.02 m NaOH for 12 h) with ovarian cells showed that there was no toxic effect for the cells for up to 72 h. Conclusion: The protocol involving 0.1% SDS and 0.02 m NaOH for 12-h incubation decellularizes bovine ovarian tissue, generating a dECM that preserves the native ECM morphology and is nontoxic to ovarian cells.

1.
Siegel
RL
,
Miller
KD
,
Fuchs
HE
,
Jemal
A
.
Cancer statistics, 2022
.
CA Cancer J Clin
.
2022
;
72
(
1
):
7
33
. .
2.
Sung
H
,
Ferlay
J
,
Siegel
RL
,
Laversanne
M
,
Soerjomataram
I
,
Jemal
A
, et al
.
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J Clin
.
2021
;
71
(
3
):
209
49
. .
3.
Maltaris
T
,
Seufert
R
,
Fischl
F
,
Schaffrath
M
,
Pollow
K
,
Koelbl
H
, et al
.
The effect of cancer treatment on female fertility and strategies for preserving fertility
.
Eur J Obstet Gynecol Reprod Biol
.
2007
;
130
(
2
):
148
55
. .
4.
Donnez
J
,
Dolmans
M-M
,
Pellicer
A
,
Diaz-Garcia
C
,
Sanchez Serrano
M
,
Schmidt
KT
, et al
.
Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation
.
Fertil Steril
.
2013
;
99
(
6
):
1503
13
. .
5.
Donnez
J
,
Dolmans
M-M
.
Fertility preservation in women
.
N Engl J Med
.
2017
;
377
(
17
):
1657
65
. .
6.
Dolmans
M-M
,
Falcone
T
,
Patrizio
P
.
Importance of patient selection to analyze in vitro fertilization outcome with transplanted cryopreserved ovarian tissue
.
Fertil Steril
.
2020
;
114
(
2
):
279
80
. .
7.
Sonmezer
M
,
Oktay
K
.
Orthotopic and heterotopic ovarian tissue transplantation
.
Best Pract Res Clin Obstet Gynaecol
.
2010
;
24
(
1
):
113
26
. .
8.
Böttcher
B
,
Winkler-Crepaz
K
.
Future perspectives of fertility preservation in women
.
Memo
.
2020
;
13
(
4
):
416
20
. .
9.
Amorim
CA
,
Shikanov
A
.
The artificial ovary: current status and future perspectives
.
Future Oncol
.
2016
;
12
(
20
):
2323
32
. .
10.
Dolmans
M-M
,
Amorim
CA
.
Fertility preservation: construction and use of artificial ovaries
.
Reproduction
.
2019
;
158
(
5
):
F15
25
. .
11.
Telfer
E
,
Torrance
C
,
Gosden
RG
.
Morphological study of cultured preantral ovarian follicles of mice after transplantation under the kidney capsule
.
Reproduction
.
1990
;
89
(
2
):
565
71
. .
12.
Gosden
RG
.
Restitution of fertility in sterilized mice by transferring primordial ovarian follicles
.
Hum Reprod
.
1990
;
5
(
5
):
499
504
. .
13.
Carroll
J
,
Gosden
RG
.
Physiology: transplantation of frozen—thawed mouse primordial follicles
.
Hum Reprod
.
1993
;
8
(
8
):
1163
7
. .
14.
Dolmans
M-M
,
Martinez-Madrid
B
,
Gadisseux
E
,
Guiot
Y
,
Yuan
WY
,
Torre
A
, et al
.
Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice
.
Reproduction
.
2007
;
134
(
2
):
253
62
. .
15.
Dolmans
M-M
,
Yuan
WY
,
Camboni
A
,
Torre
A
,
Van Langendonckt
A
,
Martinez-Madrid
B
, et al
.
Development of antral follicles after xenografting of isolated small human preantral follicles
.
Reprod Biomed Online
.
2008
;
16
(
5
):
705
11
. .
16.
Smith
RM
,
Shikanov
A
,
Kniazeva
E
,
Ramadurai
D
,
Woodruff
TK
,
Shea
LD
.
Fibrin-mediated delivery of an ovarian follicle pool in a mouse model of infertility
.
Tissue Eng Part A
.
2014
;
20
(
21–22
):
3021
30
. .
17.
Chiti
MC
,
Dolmans
MM
,
Orellana
R
,
Soares
M
,
Paulini
F
,
Donnez
J
, et al
.
Influence of follicle stage on artificial ovary outcome using fibrin as a matrix
.
Hum Reprod
.
2015
:
dev299
. .
18.
Kniazeva
E
,
Hardy
AN
,
Boukaidi
SA
,
Woodruff
TK
,
Jeruss
JS
,
Shea
LD
.
Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model
.
Sci Rep
.
2015
;
5
(
1
):
17709
. .
19.
Paulini
F
,
Vilela
JMV
,
Chiti
MC
,
Donnez
J
,
Jadoul
P
,
Dolmans
M-M
, et al
.
Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting
.
Reprod Biomed Online
.
2016
;
33
(
3
):
425
32
. .
20.
Vanacker
J
,
Dolmans
M-M
,
Luyckx
V
,
Donnez
J
,
Amorim
CA
.
First transplantation of isolated murine follicles in alginate
.
Regen Med
.
2014
;
9
(
5
):
609
19
. .
21.
Kim
J
,
Perez
AS
,
Claflin
J
,
David
A
,
Zhou
H
,
Shikanov
A
.
Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice
.
NPJ Regen Med
.
2016
;
1
(
1
):
16010
. .
22.
Dadashzadeh
A
,
Moghassemi
S
,
Shavandi
A
,
Amorim
CA
.
A review on biomaterials for ovarian tissue engineering
.
Acta Biomater
.
2021
;
135
:
48
63
. .
23.
Rajabzadeh
AR
,
Eimani
H
,
Mohseni Koochesfahani
H
,
Shahvardi
A-H
,
Fathi
R
.
Morphological study of isolated ovarian preantral follicles using fibrin gel plus platelet lysate after subcutaneous transplantation
.
Cell J
.
2015
;
17
(
1
):
145
52
. .
24.
Hrebikova
H
,
Diaz
D
,
Mokry
J
.
Chemical decellularization: a promising approach for preparation of extracellular matrix
.
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub
.
2015
;
159
(
1
):
012
7
. .
25.
Laronda
MM
,
Jakus
AE
,
Whelan
KA
,
Wertheim
JA
,
Shah
RN
,
Woodruff
TK
.
Initiation of puberty in mice following decellularized ovary transplant
.
Biomaterials
.
2015
;
50
:
20
9
. .
26.
Hochman-Mendez
C
,
Mesquita
FCP
,
Morrissey
J
,
da Costa
EC
,
Hulsmann
J
,
Tang-Quan
K
, et al
.
Restoring anatomical complexity of a left ventricle wall as a step toward bioengineering a human heart with human induced pluripotent stem cell-derived cardiac cells
.
Acta Biomater
.
2022
;
141
:
48
58
. .
27.
Kawai
N
,
Ouji
Y
,
Sakagami
M
,
Tojo
T
,
Sawabata
N
,
Yoshikawa
M
, et al
.
Induction of lung-like cells from mouse embryonic stem cells by decellularized lung matrix
.
Biochem Biophys Rep
.
2018
;
15
:
33
8
. .
28.
Kajbafzadeh
A-M
,
Khorramirouz
R
,
Nabavizadeh
B
,
Ladi Seyedian
S-S
,
Akbarzadeh
A
,
Heidari
R
, et al
.
Whole organ sheep kidney tissue engineering and in vivo transplantation: effects of perfusion-based decellularization on vascular integrity
.
Mater Sci Eng C
.
2019
;
98
:
392
400
. .
29.
Panahi
F
,
Baheiraei
N
,
Sistani
MN
,
Salehnia
M
.
Analysis of decellularized mouse liver fragment and its recellularization with human endometrial mesenchymal cells as a candidate for clinical usage
.
Prog Biomater
.
2022
;
11
(
4
):
409
20
. .
30.
Li
X
,
Wang
Y
,
Ma
R
,
Liu
X
,
Song
B
,
Duan
Y
, et al
.
Reconstruction of functional uterine tissues through recellularizing the decellularized rat uterine scaffolds by MSCs in vivo and in vitro
.
Biomed Mater
.
2021
;
16
(
3
):
035023
. .
31.
Kargar-Abarghouei
E
,
Vojdani
Z
,
Hassanpour
A
,
Alaee
S
,
Talaei-Khozani
T
.
Characterization, recellularization, and transplantation of rat decellularized testis scaffold with bone marrow-derived mesenchymal stem cells
.
Stem Cell Res Ther
.
2018
;
9
(
1
):
324
. .
32.
Hassanpour
A
,
Talaei-Khozani
T
,
Kargar-Abarghouei
E
,
Razban
V
,
Vojdani
Z
.
Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries
.
Stem Cell Res Ther
.
2018
;
9
(
1
):
252
. .
33.
Pors
SE
,
Ramløse
M
,
Nikiforov
D
,
Lundsgaard
K
,
Cheng
J
,
Andersen
CY
, et al
.
Initial steps in reconstruction of the human ovary: survival of pre-antral stage follicles in a decellularized human ovarian scaffold
.
Hum Reprod
.
2019
;
34
(
8
):
1523
35
. .
34.
Eivazkhani
F
,
Abtahi
NS
,
Tavana
S
,
Mirzaeian
L
,
Abedi
F
,
Ebrahimi
B
, et al
.
Evaluating two ovarian decellularization methods in three species
.
Mater Sci Eng C
.
2019
;
102
:
670
82
. .
35.
Liu
W-Y
,
Lin
S-G
,
Zhuo
R-Y
,
Xie
Y-Y
,
Pan
W
,
Lin
X-F
, et al
.
Xenogeneic decellularized scaffold: a novel platform for ovary regeneration
.
Tissue Eng Part C Methods
.
2017
;
23
(
2
):
61
71
. .
36.
Buckenmeyer
MJ
,
Sukhwani
M
,
Iftikhar
A
,
Nolfi
AL
,
Xian
Z
,
Dadi
S
, et al
.
Bioengineering an in situ ovary (ISO) for fertility preservation
.
bioRxiv
.
37.
Pennarossa
G
,
Ghiringhelli
M
,
Gandolfi
F
,
Brevini
TAL
.
Whole-ovary decellularization generates an effective 3D bioscaffold for ovarian bioengineering
.
J Assist Reprod Genet
.
2020
;
37
(
6
):
1329
39
. .
38.
Alshaikh
AB
,
Padma
AM
,
Dehlin
M
,
Akouri
R
,
Song
MJ
,
Brännström
M
, et al
.
Decellularization and recellularization of the ovary for bioengineering applications; studies in the mouse
.
Reprod Biol Endocrinol
.
2020
;
18
(
1
):
75
. .
39.
Alshaikh
AB
,
Padma
AM
,
Dehlin
M
,
Akouri
R
,
Song
MJ
,
Brännström
M
, et al
.
Decellularization of the mouse ovary: comparison of different scaffold generation protocols for future ovarian bioengineering
.
J Ovarian Res
.
2019
;
12
(
1
):
58
. .
40.
Nikniaz
H
,
Zandieh
Z
,
Nouri
M
,
Daei-farshbaf
N
,
Aflatoonian
R
,
Gholipourmalekabadi
M
, et al
.
Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro
.
BMC Biotechnol
.
2021
;
21
(
1
):
8
. .
41.
Faulk
DM
,
Johnson
SA
,
Zhang
L
,
Badylak
SF
.
Role of the extracellular matrix in whole organ engineering
.
J Cell Physiol
.
2014
;
229
(
8
):
984
9
. .
42.
Zvarova
B
,
Uhl
FE
,
Uriarte
JJ
,
Borg
ZD
,
Coffey
AL
,
Bonenfant
NR
, et al
.
Residual detergent detection method for nondestructive cytocompatibility evaluation of decellularized whole lung scaffolds
.
Tissue Eng Part C Methods
.
2016
;
22
(
5
):
418
28
. .
43.
White
LJ
,
Taylor
AJ
,
Faulk
DM
,
Keane
TJ
,
Saldin
LT
,
Reing
JE
, et al
.
The impact of detergents on the tissue decellularization process: a ToF-SIMS study
.
Acta Biomater
.
2017
;
50
:
207
19
. .
44.
Kraft
L
,
Ribeiro
VST
,
de Nazareno Wollmann
LCF
,
Suss
PH
,
Tuon
FF
.
Determination of antibiotics and detergent residues in decellularized tissue-engineered heart valves using LC–MS/MS
.
Cell Tissue Bank
.
2020
;
21
(
4
):
573
84
. .
45.
Amorim
CA
,
Van Langendonckt
A
,
David
A
,
Dolmans
M-M
,
Donnez
J
.
Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix
.
Hum Reprod
.
2009
;
24
(
1
):
92
9
. .
46.
Vanacker
J
,
Camboni
A
,
Dath
C
,
Van Langendonckt
A
,
Dolmans
M-M
,
Donnez
J
, et al
.
Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting
.
Fertil Steril
.
2011
;
96
(
2
):
379
83.e3
. .
47.
Crapo
PM
,
Gilbert
TW
,
Badylak
SF
.
An overview of tissue and whole organ decellularization processes
.
Biomaterials
.
2011
;
32
(
12
):
3233
43
. .
48.
Schulte
JB
,
Simionescu
A
,
Simionescu
DT
.
The acellular myocardial flap: a novel extracellular matrix scaffold enriched with patent microvascular networks and biocompatible cell niches
.
Tissue Eng Part C Methods
.
2013
;
19
(
7
):
518
30
. .
49.
Villamil Ballesteros
AC
,
Segura Puello
HR
,
Lopez-Garcia
JA
,
Bernal-Ballen
A
,
Nieto Mosquera
DL
,
Muñoz Forero
DM
, et al
.
Bovine decellularized amniotic membrane: extracellular matrix as scaffold for mammalian skin
.
Polymers (Basel)
.
2020
;
12
(
3
):
590
. .
50.
Huang
C-C
.
Microporous scaffolds via a designed decellularization procedure combined with papain-containing reagent treatments after supercritical fluid of carbon dioxide
.
Mater Lett
.
2021
;
304
:
130539
. .
51.
Cebotari
S
,
Tudorache
I
,
Jaekel
T
,
Hilfiker
A
,
Dorfman
S
,
Ternes
W
, et al
.
Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells
.
Artif Organs
.
2010
;
34
(
3
):
206
10
. .
52.
Ghorbani
F
,
Ekhtiari
M
,
Moeini Chaghervand
B
,
Moradi
L
,
Mohammadi
B
,
Kajbafzadeh
A-M
.
Detection of the residual concentration of sodium dodecyl sulfate in the decellularized whole rabbit kidney extracellular matrix
.
Cell Tissue Bank
.
2022
;
23
(
1
):
119
28
. .
53.
Ghorbani
F
,
Abdihaji
M
,
Roudkenar
MH
,
Ebrahimi
A
.
Development of a cell-based biosensor for residual detergent detection in decellularized scaffolds
.
ACS Synth Biol
.
2021
;
10
(
10
):
2715
24
. .
54.
Fahmi
T
,
Wang
X
,
Zhdanov
DD
,
Islam
I
,
Apostolov
EO
,
Savenka
AV
, et al
.
DNase I induces other endonucleases in kidney tubular epithelial cells by its DNA-degrading activity
.
Int J Mol Sci
.
2020
;
21
(
22
):
8665
. .
You do not currently have access to this content.