Introduction: Ascending aortic aneurysm is a serious health risk. In order to study ascending aortic aneurysms, elastase and calcium ion treatment for aneurysm formation are mainly used, but their aneurysm formation time is long and the aneurysm formation rate is low. Thus, this study aimed to construct a rat model of ascending aorta aneurysm with a short modeling time and high aneurysm formation rate, which may mimic the pathological processes of human ascending aorta aneurysm. Methods: Cushion needles with different pipe diameters (1.0, 1.2, 1.4, and 1.6 mm) were used to establish a human-like rat model of ascending aortic aneurysm by narrowing the ascending aorta of rats and increasing the force of blood flow on the vessel wall. The vascular diameters were evaluated using color Doppler ultrasonography after 2 weeks. The characteristics of ascending aortic aneurysm in rats were detected by Masson’s trichrome staining, Verhoeff’s Van Gieson staining, and hematoxylin and eosin staining, while real-time polymerase chain reaction was utilized to assess the total RNA of cytokine interleukin-1β, interleukin 6, transforming growth factor-beta 1, and metalloproteinase 2. Results: Two weeks after surgery, the ultrasound images and the statistical analysis demonstrated that the diameter of the ascending aorta in rats increased more than 1.5 times, similar to that in humans, indicating the success of animal modeling of ascending aortic aneurysm. Moreover, the optimal constriction diameter of the ascending aortic aneurysm model is 1.4 mm by the statistical analysis of the rate of ascending aortic aneurysm and mortality rate in rats with different constriction diameters. Conclusions: The human-like ascending aortic aneurysm model developed in this study can be used for the studies of the pathological processes and mechanisms of ascending aortic aneurysm in a more clinically relevant fashion.

1.
Stepien
KL
,
Bajdak-Rusinek
K
,
Fus-Kujawa
A
,
Kuczmik
W
,
Gawron
K
.
Role of extracellular matrix and inflammation in abdominal aortic aneurysm
.
Int J Mol Sci
.
2022
;
23
(
19
):
11078
. .
2.
Rodriguez-Rovira
I
,
Arce
C
,
De Rycke
K
,
Perez
B
,
Carretero
A
,
Arbones
M
, et al
.
Allopurinol blocks aortic aneurysm in a mouse model of Marfan syndrome via reducing aortic oxidative stress
.
Free Radic Biol Med
.
2022
;
193
(
Pt 2
):
538
50
. .
3.
Qiu
Y
,
Wang
J
,
Zhao
J
,
Wang
T
,
Zheng
T
,
Yuan
D
.
Association between blood flow pattern and rupture risk of abdominal aortic aneurysm based on computational fluid dynamics
.
Eur J Vasc Endovasc Surg
.
2022
;
64
(
2–3
):
155
64
. .
4.
Hu
J
,
Jiang
Y
,
Wu
X
,
Wu
Z
,
Qin
J
,
Zhao
Z
, et al
.
Exosomal miR-17-5p from adipose-derived mesenchymal stem cells inhibits abdominal aortic aneurysm by suppressing TXNIP-NLRP3 inflammasome
.
Stem Cell Res Ther
.
2022
;
13
(
1
):
349
. .
5.
Tang
PC
,
Coady
MA
,
Lovoulos
C
,
Dardik
A
,
Aslan
M
,
Elefteriades
JA
, et al
.
Hyperplastic cellular remodeling of the media in ascending thoracic aortic aneurysms
.
Circulation
.
2005
;
112
(
8
):
1098
105
. .
6.
Silvay
G
,
Lurie
JM
,
Casale
M
.
The anaesthetic management of patients with thoracic ascending aortic aneurysms: a review
.
J Perioper Pract
.
2021
;
31
(
7–8
):
281
8
. .
7.
Khalil
E
.
Early complications in ascending aortic aneurysm surgery: a single centre experience of 81 patients
.
Med Glas
.
2019
;
16
(
2
):
16
. .
8.
Skotsimara
G
,
Antonopoulos
A
,
Oikonomou
E
,
Papastamos
C
,
Siasos
G
,
Tousoulis
D
.
Aortic wall inflammation in the pathogenesis, diagnosis and treatment of aortic aneurysms
.
Inflammation
.
2022
;
45
(
3
):
965
76
. .
9.
Haque
K
,
Bhargava
P
.
Abdominal aortic aneurysm
.
Am Fam Physician
.
2022
;
106
(
2
):
165
72
.
10.
Golledge
J
.
Abdominal aortic aneurysm: update on pathogenesis and medical treatments
.
Nat Rev Cardiol
.
2019
;
16
(
4
):
225
42
. .
11.
Golledge
J
,
Krishna
SM
,
Wang
YT
.
Mouse models for abdominal aortic aneurysm
.
Br J Pharmacol
.
2022
;
179
(
5
):
792
810
. .
12.
Golledge
J
.
Abdominal aortic aneurysm: update on pathogenesis and medical treatments
.
Nat Rev Cardiol
.
2019
;
16
(
4
):
225
42
. .
13.
David
TE
.
Surgical treatment of ascending aorta and aortic root aneurysms
.
Prog Cardiovasc Dis
.
2010
;
52
(
5
):
438
44
. .
14.
Eckhouse
SR
,
Logdon
CB
,
Oelsen
JM
,
Patel
RK
,
Rice
AD
,
Stroud
RE
, et al
.
Reproducible porcine model of thoracic aortic aneurysm
.
Circulation
.
2013
;
128
(
11 Suppl 1
):
S186
93
. .
15.
De Leo
N
,
Melillo
A
,
Badach
J
,
Miller
H
,
Lin
A
,
Williamson
J
, et al
.
Abstract 14780: developing a model for abdominal aortic aneurysm in swine
.
Circulation
.
2020
;
142
(
Suppl_3
):
142
. .
16.
Feldman
AT
,
Wolfe
D
.
Tissue processing and hematoxylin and eosin staining
.
Methods Mol Biol
.
2014
;
1180
:
31
43
. .
17.
Moreau
JM
,
Velegraki
M
,
Bolyard
C
,
Rosenblum
MD
,
Li
Z
.
Transforming growth factor-β1 in regulatory T cell biology
.
Sci Immunol
.
2022
;
7
(
69
):
eabi4613
. .
18.
Geng
L
,
Wang
W
,
Chen
Y
,
Cao
J
,
Lu
L
,
Chen
Q
, et al
.
Elevation of ADAM10, ADAM17, MMP-2 and MMP-9 expression with media degeneration features CaCl2-induced thoracic aortic aneurysm in a rat model
.
Exp Mol Pathol
.
2010
;
89
(
1
):
72
81
. .
19.
Silvestri
V
,
Mushi
V
,
Mshana
MI
,
Bonaventure
WM
,
Justine
N
,
Kihwele
J
, et al
.
Aortic aneurysm lesions in Echinococcus infection. A review of cases in literature
.
Travel Med Infect Dis
.
2022
;
50
:
102476
. .
20.
Lyden
SP
,
Metzger
DC
,
Henao
S
,
Noor
S
,
Barleben
A
,
Henretta
JP
, et al
.
One-year safety and effectiveness of the Alto abdominal stent graft in the ELEVATE IDE trial
.
J Vasc Surg
.
2023
;
77
(
2
):
446
53.e3
. .
21.
Zhou
Z
,
Cecchi
AC
,
Prakash
SK
,
Milewicz
DM
.
Risk factors for thoracic aortic dissection
.
Genes
.
2022
;
13
(
10
):
1814
. .
22.
O’Rourke
D
,
Surman
TL
,
Abrahams
JM
,
Edwards
J
,
Reynolds
KJ
.
Predicting rupture locations of ascending aortic aneurysms using CT-based finite element models
.
J Biomech
.
2022
;
145
:
111351
. .
23.
Mieremet
A
,
van der Stoel
M
,
Li
S
,
Coskun
E
,
van Krimpen
T
,
Huveneers
S
, et al
.
Endothelial dysfunction in Marfan syndrome mice is restored by resveratrol
.
Sci Rep
.
2022
;
12
(
1
):
22504
. .
24.
Liang
Q
,
Zhou
Z
,
Li
H
,
Tao
Q
,
Wang
Y
,
Lin
A
, et al
.
Identification of pathological-related and diagnostic potential circular RNAs in Stanford type A aortic dissection
.
Front Cardiovasc Med
.
2022
;
9
:
1074835
. .
25.
Kaymakci
M
,
Elfishawi
M
,
Langenfeld
HE
,
Crowson
CS
,
Weyand
CM
,
Koster
MJ
, et al
.
The epidemiology of pathologically confirmed clinically isolated aortitis: a North American population-based study
.
Clin Exp Rheumatol
.
2023
;
41
(
4
):
956
60
. .
26.
Goncalves
PR
,
Nascimento
LD
,
Gerlach
RF
,
Rodrigues
KE
,
Prado
AF
.
Matrix metalloproteinase 2 as a pharmacological target in heart failure
.
Pharmaceuticals
.
2022
;
15
(
8
):
920
. .
27.
Inoue
R
,
Yasuma
T
,
Fridman D’Alessandro
V
,
Toda
M
,
Ito
T
,
Tomaru
A
, et al
.
Amelioration of pulmonary fibrosis by matrix metalloproteinase-2 overexpression
.
Int J Mol Sci
.
2023
;
24
(
7
):
6695
. .
You do not currently have access to this content.