Tendons have a limited capacity to repair both naturally and following clinical interventions. Damaged tissue often presents with structural and functional differences, adversely affecting animal performance, mobility, health, and welfare. Advances in cell therapies have started to overcome some of these issues, however complications such as the formation of ectopic bone remain a complication of this technique. Regenerative medicine is therefore looking toward future therapies such as the introduction of microvesicles (MVs) derived from stem cells (SCs). The aim of the present study was to assess the characteristics of artificially derived MVs, from equine mesenchymal stem cells (MSCs), when delivered to rat tendon cells in vitro and damaged tendons in vivo. The initial stages of extracting MVs from equine MSCs and identifying and characterizing the cultured tendon stem/progenitor cells (TSCs) from rat Achilles tendons were undertaken successfully. The horse MSCs and the rat tendon cells were both capable of differentiating in 3 directions: adipogenic, osteogenic, and chondrogenic pathways. The artificially derived equine MVs successfully fused with the TSC membranes, and no cytotoxic or cytostimulating effects were observed. In addition, co-cultivation of TSCs with MVs led to stimulation of cell proliferation and migration, and cytokine VEGF and fractalkine expression levels were significantly increased. These experiments are the first to show that artificially derived MVs exhibited regeneration-stimulating effects in vitro, and that fusion of cytoplasmic membranes from diploid cell lines originating from different species was possible. The experiment in vivo demonstrated the influence of MVs on synthesis of collagen I and III types in damaged tendons of rats. Explorations in vivo showed accelerated regeneration of injured tendons after introduction of the MVs into damaged areas. The results from the studies performed indicated obvious positive modifying effects following the administration of MVs. This represents the initial successful step required prior to translating this regenerative medicine technique into clinical trials, such as for tendon repair in injured horses.

1.
Abate
M
,
Silbernagel
KG
,
Siljeholm
C
,
Di Iorio
A
,
De Amicis
D
,
Salini
V
, et al
.
Pathogenesis of tendinopathies: inflammation or degeneration
.
Arthritis Res Ther
.
2009
;
11
(
3
):
235
.
2.
Andarawis-Puri
N
,
Flatow
EL
,
Soslowsky
LJ
.
Tendon basic science: development, repair, regeneration, and healing
.
J Orthop Res
.
2015 Jun
;
33
(
6
):
780
4
.
3.
Bavin
EP
,
Smith
O
,
Baird
AEG
,
Smith
LC
,
Guest
DJ
.
Equine Induced Pluripotent Stem Cells have a Reduced Tendon Differentiation Capacity Compared to Embryonic Stem Cells
.
Front Vet Sci
.
2015
;
2
:
55
.
4.
Bou-Gharios
G
,
de Crombrugghe
B
.
Type I Collagen Structure, Synthesis, and Regulation
. In:
Bilezikian
JP
,
Raisz
LG
,
Martin
TJ
, editors.
Principles of Bone Biology
.
Amsterdam
:
Elsevier, Academic Press
;
2008
. p.
285
–3
18
.
5.
Chang
J
,
Most
D
,
Stelnicki
E
,
Siebert
JW
,
Longaker
MT
,
Hui
K
, et al
.
Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair
.
Plast Reconstr Surg
.
1997 Sep
;
100
(
4
):
937
44
.
6.
Chisari
E
,
Rehak
L
,
Khan
WS
,
Maffulli
N
.
Tendon healing is adversely affected by low-grade inflammation
.
J Orthop Surg Res
.
2021 Dec
;
16
(
1
):
700
.
7.
Citeroni
MR
,
Ciardulli
MC
,
Russo
V
,
Della Porta
G
,
Mauro
A
,
El Khatib
M
, et al
.
In Vitro Innovation of Tendon Tissue Engineering Strategies
.
Int J Mol Sci
.
2020 Sep
;
21
(
18
):
6726
.
8.
Docheva
D
,
Muller
SA
,
Majewski
M
,
Evans
CH
.
Biologics for tendon repair
.
Adv Drug Deliv Rev
.
2015 Apr
;
84
:
222
39
.
9.
Durgam
SS
,
Stewart
AA
,
Sivaguru
M
,
Wagoner Johnson
AJ
,
Stewart
MC
.
Tendon-derived progenitor cells improve healing of collagenase-induced flexor tendinitis
.
J Orthop Res
.
2016 Dec
;
34
(
12
):
2162
71
.
10.
Fong
G
,
Backman
LJ
,
Andersson
G
,
Scott
A
,
Danielson
P
.
Human tenocytes are stimulated to proliferate by acetylcholine through an EGFR signalling pathway
.
Cell Tissue Res
.
2013 Mar
;
351
(
3
):
465
75
.
11.
Gissi
C
,
Radeghieri
A
,
Antonetti Lamorgese Passeri
C
,
Gallorini
M
,
Calciano
L
,
Oliva
F
, et al
.
Extracellular vesicles from rat-bone-marrow mesenchymal stromal/stem cells improve tendon repair in rat Achilles tendon injury model in dose-dependent manner: A pilot study
.
PLoS One
.
2020 Mar
;
15
(
3
):
e0229914
.
12.
Gomzikova
MO
,
Zhuravleva
MN
,
Miftakhova
RR
,
Arkhipova
SS
,
Evtugin
VG
,
Khaiboullina
SF
, et al
.
Cytochalasin B-induced membrane vesicles convey angiogenic activity of parental cells
.
Oncotarget
.
2017 Sep
;
8
(
41
):
70496
507
.
13.
Grange
C
,
Tapparo
M
,
Bruno
S
,
Chatterjee
D
,
Quesenberry
PJ
,
Tetta
C
, et al
.
Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging
.
Int J Mol Med
.
2014
;
33
(
5
):
1055
63
.
14.
Hope
M
,
Saxby
TS
.
Tendon healing
.
Foot Ankle Clin
.
2007 Dec
;
12
(
4
):
553
67
.
15.
Kovac
M
,
Litvin
YA
,
Aliev
RO
,
Zakirova
EY
,
Rutland
CS
,
Kiyasov
AP
, et al
.
Gene Therapy Using Plasmid DNA Encoding Vascular Endothelial Growth Factor 164 and Fibroblast Growth Factor 2 Genes for the Treatment of Horse Tendinitis and Desmitis: Case Reports
.
Front Vet Sci
.
2017
;
4
:
168
.
16.
Kovach
M
,
Aliev
A
,
Stavitsky
S
,
Eremin
P
,
Pulin
S
,
Eremin
A
.
Application of multipotent mesenchymal stromal cells in a case of horse tendon damage
.
VetPharmа
.
2016
;
66
:
72
7
.
17.
Kusuma
GD
,
Menicanin
D
,
Gronthos
S
,
Manuelpillai
U
,
Abumaree
MH
,
Pertile
MD
, et al
.
Ectopic Bone Formation by Mesenchymal Stem Cells Derived from Human Term Placenta and the Decidua
.
PLoS One
.
2015
;
10
(
10
):
e0141246
.
18.
Lehner
C
,
Spitzer
G
,
Gehwolf
R
,
Wagner
A
,
Weissenbacher
N
,
Deininger
C
, et al
.
Tenophages: a novel macrophage-like tendon cell population expressing CX3CL1 and CX3CR1
.
Dis Model Mech
.
2019 Dec
;
12
(
12
):
dmm041384
.
19.
Li
Y
,
Wu
T
,
Liu
S
.
Identification and Distinction of Tenocytes and Tendon-Derived Stem Cells
.
Front Cell Dev Biol
.
2021
;
9
:
629515
.
20.
Li
ZJ
,
Yang
QQ
,
Zhou
YL
.
Basic Research on Tendon Repair: Strategies, Evaluation, and Development
.
Front Med (Lausanne)
.
2021
;
8
:
664909
.
21.
Liu
H
,
Xu
J
,
Lan
Y
,
Lim
HW
,
Jiang
R
.
The Scleraxis Transcription Factor Directly Regulates Multiple Distinct Molecular and Cellular Processes During Early Tendon Cell Differentiation
.
Front Cell Dev Biol
.
2021
;
9
:
654397
.
22.
Naumenko
E
,
Zakirova
E
,
Guryanov
I
,
Akhatova
F
,
Sergeev
M
,
Valeeva
A
, et al
.
Composite biodegradable polymeric matrix doped with halloysite nanotubes for the repair of bone defects in dogs
.
Clays Clay Miner
.
2021
;
69
(
5
):
522
32
.
23.
O'Brien
C
,
Marr
N
,
Thorpe
C
.
Microdamage in the equine superficial digital flexor tendon
.
Equine Vet J
.
2021 May
;
53
(
3
):
417
30
.
24.
Oshiro
W
,
Lou
J
,
Xing
X
,
Tu
Y
,
Manske
PR
.
Flexor tendon healing in the rat: a histologic and gene expression study
.
J Hand Surg Am
.
2003 Sep
;
28
(
5
):
814
23
.
25.
Qamar
AY
,
Hussain
T
,
Rafique
MK
,
Bang
S
,
Tanga
BM
,
Seong
G
, et al
.
The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility
.
Cells
.
2021 Sep
;
10
(
9
):
2460
.
26.
Ren
S
,
Chen
J
,
Duscher
D
,
Liu
Y
,
Guo
G
,
Kang
Y
, et al
.
Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways
.
Stem Cell Res Ther
.
2019 Jan
;
10
(
1
):
47
.
27.
Rui
YF
,
Lui
PPY
,
Li
G
,
Fu
SC
,
Lee
YW
,
Chan
KM
.
Isolation and characterization of multipotent rat tendon-derived stem cells
.
Tissue Eng Part A
.
2010 May
;
16
(
5
):
1549
58
.
28.
Russo
V
,
Mauro
A
,
Martelli
A
,
Di Giacinto
O
,
Di Marcantonio
L
,
Nardinocchi
D
, et al
.
Cellular and molecular maturation in fetal and adult ovine calcaneal tendons
.
J Anat
.
2015 Feb
;
226
(
2
):
126
42
.
29.
Russo
V
,
El Khatib
M
,
di Marcantonio
L
,
Ancora
M
,
Wyrwa
R
,
Mauro
A
, et al
.
Tendon Biomimetic Electrospun PLGA Fleeces Induce an Early Epithelial-Mesenchymal Transition and Tenogenic Differentiation on Amniotic Epithelial Stem Cells
.
Cells
.
2020 Jan
;
9
(
2
):
303
.
30.
Satomi
E
,
Teodoro
WR
,
Parra
ER
,
Fernandes
TD
,
Velosa
APP
,
Capelozzi
VL
, et al
.
Changes in histoanatomical distribution of types I, III and V collagen promote adaptative remodeling in posterior tibial tendon rupture
.
Clinics
.
2008
;
63
(
1
):
9
14
.
31.
Schneider
M
,
Angele
P
,
Jarvinen
TAH
,
Docheva
D
.
Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing
.
Adv Drug Deliv Rev
.
2018 Apr
;
129
:
352
75
.
32.
Shamriz
O
,
Nussinovitch
U
,
Rose
NR
.
Chapter 1 - Pathophysiology of Autoimmunity and Immune-Mediated Mechanisms in Cardiovascular Diseases
. In:
Nussinovitch
U
, editor.
The Heart in Rheumatic, Autoimmune and Inflammatory Diseases
.
London
:
Academic Press
;
2017
. p.
3
23
.
33.
Smith
RKW
.
Cell-based therapies for the repair and regeneration of tendons and ligaments
. In:
Archer
C
,
Ralphs
J
, editors.
Regenerative Medicine and Biomaterials for the Repair of Connective Tissues
.
Cambridge
:
Woodhead Publishing Limited
;
2010
. p.
436
51
.
34.
Tan
Q
,
Lui
PPY
,
Lee
YW
.
In vivo identity of tendon stem cells and the roles of stem cells in tendon healing
.
Stem Cells Dev
.
2013 Dec
;
22
(
23
):
3128
40
.
35.
Voleti
PB
,
Buckley
MR
,
Soslowsky
LJ
.
Tendon healing: repair and regeneration
.
Annu Rev Biomed Eng
.
2012
;
14
:
47
71
.
36.
Wang
JHC
,
Komatsu
I
.
Tendon Stem Cells: Mechanobiology and Development of Tendinopathy
.
Adv Exp Med Biol
.
2016
;
920
:
53
62
.
37.
Wang
JHC
,
Thampatty
BP
.
Chapter 5 - Advances in tendon mechanobiology
. In:
Verbruggen
SW
, editor.
Mechanobiology in Health and Disease
.
London
:
Academic Press, Elsevier
;
2018
. p.
127
55
.
38.
Wang
Y
,
He
G
,
Guo
Y
,
Tang
H
,
Shi
Y
,
Bian
X
, et al
.
Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix
.
J Cell Mol Med
.
2019 Aug
;
23
(
8
):
5475
85
.
39.
Yang
J
,
Zhao
Q
,
Wang
K
,
Liu
H
,
Ma
C
,
Huang
H
, et al
.
Isolation and biological characterization of tendon-derived stem cells from fetal bovine
.
Vitro Cell Dev Biol Anim
.
2016 Sep
;
52
(
8
):
846
56
.
40.
Yerofeyeva
AMV
,
Zhavoronok
IP
,
Antipova
OA
,
Ryzhkovskaya
EL
,
Kuznetsova
TE
,
Vasilevich
IV
, et al
.
Effects of adipose-derived mesenchymal stem cells on nociceptive sensitivity and repair processes at achilles tendon injury model in rats
.
Doklady Natl Acad Sci Belarus
.
2020
;
64
(
5
):
574
82
.
41.
Yin
Z
,
Hu
JJ
,
Yang
L
,
Zheng
ZF
,
An
CR
,
Wu
BB
, et al
.
Single-cell analysis reveals a nestin(+) tendon stem/progenitor cell population with strong tenogenic potentiality
.
Sci Adv
.
2016 Nov
;
2
(
11
):
e1600874
.
42.
Yu
H
,
Cheng
J
,
Shi
W
,
Ren
B
,
Zhao
F
,
Shi
Y
, et al
.
Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells
.
Acta Biomater
.
2020 Apr
;
106
:
328
41
.
43.
Zakirova
EY
,
Shalimov
DV
,
Garanina
EE
,
Zhuravleva
MN
,
Rutland
CS
,
Rizvanov
AA
.
Use of Biologically Active 3D Matrix for Extensive Skin Defect Treatment in Veterinary Practice: Case Report
.
Front Vet Sci
.
2019
;
6
:
76
.
44.
Zakirova
EY
,
Aimaletdinov
AM
,
Alexandrova
NM
,
Ganiev
IM
,
Sofronova
SA
,
Valeeva
AN
, et al
.
Developing a species-specific genetic agent for treatment of skin defects in dogs
.
Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki
.
2020a
;
162
(
3
):
361
80
.
45.
Zakirova
EY
,
Aimaletdinov
AM
,
Malanyeva
AG
,
Rutland
CS
,
Rizvanov
AA
.
Extracellular Vesicles: New Perspectives of Regenerative and Reproductive Veterinary Medicine
.
Front Vet Sci
.
2020b
;
7
:
594044
.
46.
Zakirova
EY
,
Aimaletdinov
AM
,
Tambovsky
MA
,
Rizvanov
AA
.
Comparative characteristics of mesenchymal stem cell lines from different animal species
.
Tsitologiya
.
2021
;
63
(
2
):
139
55
.
47.
Zhang
J
,
Wang
JHC
.
Characterization of differential properties of rabbit tendon stem cells and tenocytes
.
BMC Musculoskelet Disord
.
2010 Jan
;
11
:
10
.
48.
Zhang
J
,
Guan
J
,
Niu
X
,
Hu
G
,
Guo
S
,
Li
Q
, et al
.
Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis
.
J Transl Med
.
2015
;
13
:
49
.
You do not currently have access to this content.