The extracellular matrix (ECM) is a complex, hierarchical material containing structural and bioactive components. This complexity makes decoupling the effects of biomechanical properties and cell-matrix interactions difficult, especially when studying cellular processes in a 3D environment. Matrix mechanics and cell adhesion are both known regulators of specific cellular processes such as stem cell proliferation and differentiation. However, more information is required about how such variables impact various neural lineages that could, upon transplantation, therapeutically improve neural function after a central nervous system injury or disease. Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels are one biomaterial approach to meet these goals, consisting of a family of peptide sequences that assemble into physical hydrogels in physiological media. In this study, we studied our previously reported supramolecularly-assembling RAPID hydrogels functionalized with the ECM-derived cell-adhesive peptide ligands RGD, IKVAV, and YIGSR. Using molecular dynamics simulations and experimental rheology, we demonstrated that these integrin-binding ligands at physiological concentrations (3–12 m<sc>m</sc>) did not impact the assembly of the KYFIL peptide system. In simulations, molecular measures of assembly such as hydrogen bonding and pi-pi interactions appeared unaffected by cell-adhesion sequence or concentration. Visualizations of clustering and analysis of solvent-accessible surface area indicated that the integrin-binding domains remained exposed. KYFIL or AYFIL hydrogels containing 3 m<sc>m</sc> of integrin-binding domains resulted in mechanical properties consistent with their non-functionalized equivalents. This strategy of doping RAPID gels with cell-adhesion sequences allows for the precise tuning of peptide ligand concentration, independent of the rheological properties. The controllability of the RAPID hydrogel system provides an opportunity to investigate the effect of integrin-binding interactions on encapsulated neural cells to discern how hydrogel microenvironment impacts growth, maturation, or differentiation.

Small molecules can assemble together into larger structures to impact biological outcomes. One such type of assembly occurs between peptides, short chains of amino acids bonded together. When carefully designed, some peptides can assemble into fibers and hydrogels. However, adding additional amino acids to the peptide, in order to have a different biological effect, may interfere with the structural assembly. This paper examines how some peptide modifications may or may not interrupt assembly. We use both computational simulations and experimental methods to characterize material mechanical properties. Our results indicate that at concentrations appropriate for biological systems, the modifications do not dramatically impact peptide assembly.

1.
Alegre-Requena
JV
,
Saldías
C
,
Inostroza-Rivera
R
,
Díaz Díaz
D
.
Understanding hydrogelation processes through molecular dynamics
.
J Mater Chem B
.
2019
;
7
(
10
):
1652
73
.
2.
Álvarez
Z
,
Ortega
JA
,
Sato
K
,
Sasselli
IR
,
Kolberg-Edelbrock
AN
,
Qiu
R
.
Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons
.
Cell Stem Cell
.
2023
;
30
(
2
):
219
38.e14
.
3.
Asmani
MN
,
Ai
J
,
Amoabediny
G
,
Noroozi
A
,
Azami
M
,
Ebrahimi-Barough
S
.
Three-dimensional culture of differentiated endometrial stromal cells to oligodendrocyte progenitor cells (OPCs) in fibrin hydrogel
.
Cell Biol Int
.
2013
;
37
(
12
):
1340
9
.
4.
Banerjee
A
,
Arha
M
,
Choudhary
S
,
Ashton
RS
,
Bhatia
SR
,
Schaffer
DV
.
The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells
.
Biomaterials
.
2009
;
30
(
27
):
4695
9
.
5.
Bordo
D
,
Argos
P
.
The role of side-chain hydrogen bonds in the formation and stabilization of secondary structure in soluble proteins
.
J Mol Biol
.
1994
;
243
(
3
):
504
19
.
6.
Brown
TE
,
Anseth
KS
.
Spatiotemporal hydrogel biomaterials for regenerative medicine
.
Chem Soc Rev
.
2017
;
46
(
21
):
6532
52
.
7.
Clarke
DE
,
Pashuck
ET
,
Bertazzo
S
,
Weaver
JVM
,
Stevens
MM
.
Self-healing, self-assembled β-sheet peptide-poly(γ-glutamic acid) hybrid hydrogels
.
J Am Chem Soc
.
2017
;
139
(
21
):
7250
5
.
8.
Condon
JE
,
Jayaraman
A
.
Jayaraman A: development of a coarse-grained model of collagen-like peptide (CLP) for studies of CLP triple helix melting
.
J Phys Chem B
.
2018
;
122
(
6
):
1929
39
.
9.
Contreras-Riquelme
S
,
Garate
J-A
,
Perez-Acle
T
,
Martin
AJM
.
RIP-MD: a tool to study residue interaction networks in protein molecular dynamics
.
PeerJ
.
2018
;
6
:
e5998
.
10.
Cui
GH
,
Shao
SJ
,
Yang
JJ
,
Liu
JR
,
Guo
HD
.
Designer self-assemble peptides maximize the therapeutic benefits of neural stem cell transplantation for alzheimer’s disease via enhancing neuron differentiation and paracrine action
.
Mol Neurobiol
.
2016
;
53
(
2
):
1108
23
.
11.
Dånmark
S
,
Aronsson
C
,
Aili
D
.
Tailoring supramolecular peptide–poly(ethylene glycol) hydrogels by coiled coil self-assembly and self-sorting
.
Biomacromolecules
.
2016
;
17
(
6
):
2260
7
.
12.
Diao
HJ
,
Low
WC
,
Milbreta
U
,
Lu
QR
,
Chew
SY
.
Nanofiber-mediated microRNA delivery to enhance differentiation and maturation of oligodendroglial precursor cells
.
J Control Release
.
2015
;
208
:
85
92
.
13.
Ding
L
,
Jiang
Y
,
Zhang
J
,
Klok
H-A
,
Zhong
Z
.
pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: synthesis and targeted intracellular protein delivery to CD44 positive cancer cells
.
Biomacromolecules
.
2018
;
19
(
2
):
555
62
.
14.
Edwards-Gayle
CJC
,
Hamley
IW
.
Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials
.
Org Biomol Chem
.
2017
;
15
(
28
):
5867
76
.
15.
Farrukh
A
,
Ortega
F
,
Fan
W
,
Marichal
N
,
Paez
JI
,
Berninger
B
.
Bifunctional hydrogels containing the laminin motif IKVAV promote neurogenesis
.
Stem Cell Rep
.
2017
;
9
(
5
):
1432
40
.
16.
Fischer
SE
,
Liu
X
,
Mao
H-Q
,
Harden
JL
.
Controlling cell adhesion to surfaces via associating bioactive triblock proteins
.
Biomaterials
.
2007
;
28
(
22
):
3325
37
.
17.
Frederix
PWJM
,
Scott
GG
,
Abul-Haija
YM
,
Kalafatovic
D
,
Pappas
CG
,
Javid
N
.
Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels
.
Nat Chem
.
2015
;
7
(
1
):
30
7
.
18.
Gartner
TEI
,
Jayaraman
A
.
Modeling and simulations of polymers: a roadmap
.
Macromolecules
.
2019
;
52
(
3
):
755
86
.
19.
Gelain
F
,
Lomander
A
,
Vescovi
AL
,
Zhang
S
.
Systematic studies of a self-assembling peptide nanofiber scaffold with other scaffolds
.
J Nanosci Nanotechnol
.
2007
;
7
(
2
):
424
34
.
20.
Gray
VP
,
Amelung
CD
,
Duti
IJ
,
Laudermilch
EG
,
Letteri
RA
,
Lampe
KJ
.
Biomaterials via peptide assembly: design, characterization, and application in tissue engineering
.
Acta Biomater
.
2022
;
140
:
43
75
.
21.
Haines-Butterick
L
,
Rajagopal
K
,
Branco
M
,
Salick
D
,
Rughani
R
,
Pilarz
M
.
Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
19
):
7791
6
.
22.
Hartgerink
JD
,
Beniash
E
,
Stupp
SI
.
Self-assembly and mineralization of peptide-amphiphile nanofibers
.
Science
.
2001
;
294
(
5547
):
1684
8
.
23.
Hilderbrand
AM
,
Taylor
PA
,
Stanzione
F
,
LaRue
M
,
Guo
C
,
Jayaraman
A
.
Combining simulations and experiments for the molecular engineering of multifunctional collagen mimetic peptide-based materials
.
Soft Matter
.
2021
;
17
(
7
):
1985
98
.
24.
Humphrey
W
,
Dalke
A
,
Schulten
K
.
VMD: Visual molecular dynamics
.
J Mol Graph
.
1996
;
14
(
1
):
33
8, 27-8
.
25.
Jayawarna
V
,
Ali
M
,
Jowitt
TA
,
Miller
AF
,
Saiani
A
,
Gough
JE
.
Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl–dipeptides
.
Adv Mater
.
2006
;
18
(
5
):
611
4
.
26.
Jung
JP
,
Moyano
JV
,
Collier
JH
.
Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices
.
Integr Biol
.
2011
;
3
:
185
96
.
27.
Lampe
KJ
,
Antaris
AL
,
Heilshorn
SC
.
Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth
.
Acta Biomater
.
2013
;
9
(
3
):
5590
9
.
28.
Larsen
PH
,
Yong
VW
.
The expression of matrix metalloproteinase-12 by oligodendrocytes regulates their maturation and morphological differentiation
.
J Neurosci
.
2004
;
24
(
35
):
7597
603
.
29.
LeBaron
RG
,
Athanasiou
KA
.
Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials
.
Tissue Eng
.
2000
;
6
(
2
):
85
103
.
30.
Lee
S
,
Leach
MK
,
Redmond
SA
,
Chong
SYC
,
Mellon
SH
,
Tuck
SJ
.
A culture system to study oligodendrocyte myelination processes using engineered nanofibers
.
Nat Methods
.
2012
;
9
:
917
22
.
31.
Li
NK
,
García Quiroz
F
,
Hall
CK
,
Chilkoti
A
,
Yingling
YG
.
Molecular description of the LCST behavior of an elastin-like polypeptide
.
Biomacromolecules
.
2014
;
15
(
10
):
3522
30
.
32.
Liedmann
A
,
Rolfs
A
,
Frech
MJ
.
Cultivation of human neural progenitor cells in a 3-dimensional self-assembling peptide hydrogel
.
J Vis Exp
.
2012
59
3830
.
33.
Lourenço
T
,
Grãos
M
.
Modulation of oligodendrocyte differentiation by mechanotransduction
.
Front Cell Neurosci
.
2016
;
10
:
277
.
34.
Madl
CM
,
Katz
LM
,
Heilshorn
SC
.
Bio-orthogonally crosslinked, engineered protein hydrogels with tunable mechanics and biochemistry for cell encapsulation
.
Adv Funct Mater
.
2016
;
26
(
21
):
3612
20
.
35.
Mann
JL
,
Yu
AC
,
Agmon
G
,
Appel
EA
.
Supramolecular polymeric biomaterials
.
Biomater Sci
.
2017
;
6
(
1
):
10
37
.
36.
Mansbach
RA
,
Ferguson
AL
.
Coarse-grained molecular simulation of the hierarchical self-assembly of π-conjugated optoelectronic peptides
.
J Phys Chem B
.
2017
;
121
(
7
):
1684
706
.
37.
Marquardt
LM
,
Doulames
VM
,
Wang
AT
,
Dubbin
K
,
Suhar
RA
,
Kratochvil
MJ
.
Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy
.
Sci Adv
.
2020
6
14
eaaz1039
.
38.
McDonald
IK
,
Thornton
JM
.
Satisfying hydrogen bonding potential in proteins
.
J Mol Biol
.
1994
;
238
(
5
):
777
93
.
39.
Meco
E
,
Zheng
WS
,
Sharma
AH
,
Lampe
KJ
.
Guiding oligodendrocyte precursor cell maturation with urokinase plasminogen activator-degradable elastin-like protein hydrogels
.
Biomacromolecules
.
2020
;
21
(
12
):
4724
36
.
40.
Miller
JS
,
Shen
CJ
,
Legant
WR
,
Baranski
JD
,
Blakely
BL
,
Chen
CS
.
Bioactive hydrogels made from step-growth derived PEG-peptide macromers
.
Biomaterials
.
2010
;
31
(
13
):
3736
43
.
41.
Murphy
NP
,
Lampe
KJ
.
Mimicking biological phenomena in hydrogel-based biomaterials to promote dynamic cellular responses
.
J Mater Chem B
.
2015
;
3
(
40
):
7867
80
.
42.
Patel
R
,
Santhosh
M
,
Dash
JK
,
Karpoormath
R
,
Jha
A
,
Kwak
J
.
A moldy application of MALDI: MALDI-ToF mass spectrometry for fungal identification
.
J Fungi
.
2019
;
5
(
1
):
4
12
.
43.
Payne
SL
,
Tuladhar
A
,
Obermeyer
JM
,
Varga
BV
,
Teal
CJ
,
Morshead
CM
.
Initial cell maturity changes following transplantation in a hyaluronan-based hydrogel and impacts therapeutic success in the stroke-injured rodent brain
.
Biomaterials
.
2019
;
192
:
309
22
.
44.
Phillips
JC
,
Hardy
DJ
,
Maia
JDC
,
Stone
JE
,
Ribeiro
JV
,
Bernardi
RC
.
Scalable molecular dynamics on CPU and GPU architectures with NAMD
.
J Chem Phys
.
2020
;
153
(
4
):
044130
.
45.
Prhashanna
A
,
Taylor
PA
,
Qin
J
,
Kiick
KL
,
Jayaraman
A
.
Effect of peptide sequence on the LCST-like transition of elastin-like peptides and elastin-like peptide–collagen-like peptide conjugates: simulations and experiments
.
Biomacromolecules
.
2019
;
20
(
3
):
1178
89
.
46.
Rodell
CB
,
Kaminski
AL
,
Burdick
JA
.
Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels
.
Biomacromolecules
.
2013
;
14
(
11
):
4125
34
.
47.
Rodrigues
GMC
,
Gaj
T
,
Adil
MM
,
Wahba
J
,
Rao
AT
,
Lorbeer
FK
.
Defined and scalable differentiation of human oligodendrocyte precursors from pluripotent stem cells in a 3D culture system
.
Stem Cell Rep
.
2017
;
8
(
6
):
1770
83
.
48.
Russell
LN
,
Lampe
KJ
.
Engineering biomaterials to influence oligodendroglial growth, maturation, and myelin production
.
Cells Tissues Organs
.
2016
202
1-2
85
101
.
49.
Russell
LN
,
Lampe
KJ
.
Oligodendrocyte precursor cell viability, proliferation, and morphology is dependent on mesh size and storage modulus in 3D poly(ethylene glycol)-based hydrogels
.
ACS Biomater Sci Eng
.
2017
;
3
(
12
):
3459
68
.
50.
Schneider
JP
,
Pochan
DJ
,
Ozbas
B
,
Rajagopal
K
,
Pakstis
L
,
Kretsinger
J
.
Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide
.
J Am Chem Soc
.
2002
;
124
(
50
):
15030
7
.
51.
Silva
GA
,
Czeisler
C
,
Niece
KL
,
Beniash
E
,
Harrington
DA
,
Kessler
JA
.
Selective differentiation of neural progenitor cells by high-epitope density nanofibers
.
Science
.
2004
;
303
(
5662
):
1352
5
.
52.
Smith
AV
,
Hall
CK
.
Protein refolding versus aggregation: computer simulations on an intermediate-resolution protein model
.
J Mol Biol
.
2001
;
312
(
1
):
187
202
.
53.
Smith
AM
,
Williams
RJ
,
Tang
C
,
Coppo
P
,
Collins
RF
,
Turner
ML
.
Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets
.
Adv Mater
.
2008
;
20
(
1
):
37
41
.
54.
Sumey
JL
,
Johnston
PC
,
Harrell
AM
,
Caliari
SR
.
Hydrogel mechanics regulate fibroblast DNA methylation and chromatin condensation
.
Biomater Sci
.
2023
;
11
(
8
):
2886
97
.
55.
Tang
JD
,
Mura
C
,
Lampe
KJ
.
Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering
.
J Am Chem Soc
.
2019a
141
12
4886
99
.
56.
Tang
JD
,
Roloson
EB
,
Amelung
CD
,
Lampe
KJ
.
Rapidly assembling pentapeptides for injectable delivery (RAPID) hydrogels as cytoprotective cell carriers
.
ACS Biomater Sci Eng
.
2019b
5
2117
21
.
57.
Taylor
PA
,
Huang
H
,
Kiick
KL
,
Jayaraman
A
.
Placement of tyrosine residues as a design element for tuning the phase transition of elastin-peptide-containing conjugates: experiments and simulations
.
Mol Syst Des Eng
.
2020
;
5
(
7
):
1239
54
.
58.
Taylor
PA
,
Kloxin
AM
,
Jayaraman
A
.
Impact of collagen-like peptide (CLP) heterotrimeric triple helix design on helical thermal stability and hierarchical assembly: a coarse-grained molecular dynamics simulation study
.
Soft Matter
.
2022
;
18
(
16
):
3177
92
.
59.
Thompson
HL
,
Burbelo
PD
,
Yamada
Y
,
Kleinman
HK
,
Metcalfe
DD
.
Identification of an amino acid sequence in the laminin A chain mediating mast cell attachment and spreading
.
Immunology
.
1991
;
72
(
1
):
144
9
.
60.
Tibbitt
MW
,
Anseth
KS
.
Hydrogels as extracellular matrix mimics for 3D cell culture
.
Biotechnol Bioeng
.
2009
;
103
(
4
):
655
63
.
61.
Tien
MZ
,
Meyer
AG
,
Sydykova
DK
,
Spielman
SJ
,
Wilke
CO
.
Maximum allowed solvent accessibilites of residues in proteins
.
PLoS One
.
2013
;
8
(
11
):
e80635
.
62.
Cheng
TY
,
Chen
MH
,
Chang
WH
,
Huang
MY
,
Wang
TW
.
Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering
.
Biomaterials
.
2013
;
34
(
8
):
2005
16
.
63.
Tysseling
VM
,
Sahni
V
,
Pashuck
ET
,
Birch
D
,
Hebert
A
,
Czeisler
C
.
Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury
.
J Neurosci Res
.
2010
;
88
(
14
):
3161
70
.
64.
Unal
DB
,
Caliari
SR
,
Lampe
KJ
.
3D hyaluronic acid hydrogels for modeling oligodendrocyte progenitor cell behavior as a function of matrix stiffness
.
Biomacromolecules
.
2020
;
21
(
12
):
4962
71
.
65.
Urbanski
MM
,
Kingsbury
L
,
Moussouros
D
,
Kassim
I
,
Mehjabeen
S
,
Paknejad
N
.
Myelinating glia differentiation is regulated by extracellular matrix elasticity
.
Sci Rep
.
2016
;
6
:
33751
.
66.
Veiga
S
,
Ly
J
,
Chan
PH
,
Bresnahan
JC
,
Beattie
MS
.
SOD1 overexpression improves features of the oligodendrocyte precursor response in vitro
.
Neurosci Lett
.
2011
;
503
(
1
):
10
4
.
67.
Virtanen
P
,
Gommers
R
,
Oliphant
TE
,
Haberland
M
,
Reddy
T
,
Cournapeau
D
.
SciPy 1.0: fundamental algorithms for scientific computing in Python
.
Nat Methods
.
2020
;
17
(
3
):
261
72
.
68.
Wang
J
,
Liu
K
,
Xing
R
,
Yan
X
.
Peptide self-assembly: thermodynamics and kinetics
.
Chem Soc Rev
.
2016
;
45
(
20
):
5589
604
.
69.
Wang
Y
,
An
Y
,
Shmidov
Y
,
Bitton
R
,
Deshmukh
SA
,
Matson
JB
.
A combined experimental and computational approach reveals how aromatic peptide amphiphiles self-assemble to form ion-conducting nanohelices
.
Mater Chem Front
.
2020
;
4
(
10
):
3022
31
.
70.
Weber
LM
,
Hayda
KN
,
Haskins
K
,
Anseth
KS
.
The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides
.
Biomaterials
.
2007
;
28
(
19
):
3004
11
.
71.
Weinhold
F
,
Klein
RA
.
What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions
.
Mol Phys
.
2012
110
9-10
565
79
.
72.
Wong Po Foo
CTS
,
Lee
JS
,
Mulyasasmita
W
,
Parisi-Amon
A
,
Heilshorn
SC
.
Two-component protein-engineered physical hydrogels for cell encapsulation
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
52
):
22067
72
.
73.
Ylä-Outinen
L
,
Joki
T
,
Varjola
M
,
Skottman
H
,
Narkilahti
S
.
Three-dimensional growth matrix for human embryonic stem cell-derived neuronal cells
.
J Tissue Eng Regen Med
.
2014
;
8
(
3
):
186
94
.
74.
Yu
X
,
Dillon
GP
,
Bellamkonda
RB
.
A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension
.
Tissue Eng
.
1999
;
5
(
4
):
291
304
.
75.
Zhong
J
,
Chan
A
,
Morad
L
,
Kornblum
HI
,
Fan
G
,
Carmichael
ST
.
Hydrogel matrix to support stem cell survival after brain transplantation in stroke
.
Neurorehabil Neural Repair
.
2010
;
24
(
7
):
636
44
.
You do not currently have access to this content.