Varying degrees of hydroxyapatite (HA) surface functionalization have been implicated as the primary driver of differential osteogenesis observed in infiltrating cells. The ability to reliably create spatially controlled areas of mineralization in composite engineered tissues is of growing interest in the field, and the use of HA-functionalized biomaterials may provide a robust solution to this challenge. In this study, we successfully fabricated polycaprolactone salt-leached scaffolds with two levels of a biomimetic calcium phosphate coating to examine their effects on MSC osteogenesis. Longer duration coating in simulated body fluid (SBF) led to increased HA crystal nucleation within scaffold interiors as well as more robust HA crystal formation on scaffold surfaces. Ultimately, the increased surface stiffness of scaffolds coated in SBF for 7 days in comparison to scaffolds coated in SBF for 1 day led to more robust osteogenesis of MSCs in vitro without the assistance of osteogenic signaling molecules. This study also demonstrated that the use of SBF-based HA coatings can promote higher levels of osteogenesis in vivo. Finally, when incorporated as the endplate region of a larger tissue-engineered intervertebral disc replacement, HA coating did not induce mineralization in or promote cell migration out of neighboring biomaterials. Overall, these results verified tunable biomimetic HA coatings as a promising biomaterial modification to promote discrete regions of mineralization within composite engineered tissues.

1.
Albrektsson
T
,
Johansson
C
.
Osteoinduction, osteoconduction and osseointegration
.
Eur Spine J
.
2001
;
10
(
Suppl 2
):
S96
101
.
2.
Alizadeh-Osgouei
M
,
Li
Y
,
Wen
C
.
A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications
.
Bioact Mater
.
2019
;
4
(
1
):
22
36
.
3.
Benayahu
D
,
Wiesenfeld
Y
,
Sapir-Koren
R
.
How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate
.
J Cell Physiol
.
2019
;
234
(
8
):
12133
41
.
4.
Bhattacharjee
P
,
Naskar
D
,
Maiti
TK
,
Bhattacharya
D
,
Kundu
SC
.
Non-mulberry silk fibroin grafted poly(ε-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration
.
J Colloid Interface Sci
.
2016
;
472
:
16
33
.
5.
Bhattacharjee
P
,
Maiti
TK
,
Bhattacharya
D
,
Nandi
SK
.
Effect of different mineralization processes on in vitro and in vivo bone regeneration and osteoblast-macrophage cross-talk in co-culture system using dual growth factor mediated non-mulberry silk fibroin grafted poly(ε-caprolactone) nanofibrous scaffold
.
Colloids Surf B Biointerfaces
.
2017
;
156
:
270
81
.
6.
Bian
L
,
Zhai
DY
,
Mauck
RL
,
Burdick
JA
.
Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage
.
Tissue Eng Part A
.
2011a
;
17
(
7–8
):
1137
45
.
7.
Bian
L
,
Zhai
DY
,
Tous
E
,
Rai
R
,
Mauck
RL
,
Burdick
JA
.
Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo
.
Biomaterials
.
2011b
;
32
(
27
):
6425
34
.
8.
Bose
S
,
Tarafder
S
.
Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review
.
Acta Biomater
.
2012
;
8
(
4
):
1401
21
.
9.
Bral
A
,
Mommaerts
MY
.
In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: a systematic review
.
J Craniomaxillofacial Surg
.
2016
;
44
(
4
):
400
12
.
10.
Carvalho
MS
,
Silva
JC
,
Hoff
CM
,
Cabral
JMS
,
Linhardt
RJ
,
da Silva
CL
,
.
Loss and rescue of osteocalcin and osteopontin modulate osteogenic and angiogenic features of mesenchymal stem/stromal cells
.
J Cell Physiol
.
2020
;
235
(
10
):
7496
515
.
11.
Chen
Y
,
Chen
S
,
Kawazoe
N
,
Chen
G
.
Promoted angiogenesis and osteogenesis by dexamethasone-loaded calcium phosphate nanoparticles/collagen composite scaffolds with microgroove networks
.
Sci Rep
.
2018
;
8
(
1
):
14143
.
12.
Chen
P
,
Li
L
,
Dong
L
,
Wang
S
,
Huang
Z
,
Qian
Y
,
.
Gradient biomineralized silk fibroin nanofibrous scaffold with osteochondral inductivity for integration of tendon to bone
.
ACS Biomater Sci Eng
.
2021
;
7
(
3
):
841
51
.
13.
Chong
JE
,
Santerre
JP
,
Kandel
RA
.
Generation of an in vitro model of the outer annulus fibrosus-cartilage interface
.
JOR Spine
.
2020
;
3
(
2
):
1
11
.
14.
Chuenjitkuntaworn
B
,
Inrung
W
,
Damrongsri
D
,
Mekaapiruk
K
,
Supaphol
P
,
Pavasant
P
.
Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells
.
J Biomed Mater Res A
.
2010
;
94
(
1
):
241
51
.
15.
Costa
DO
,
Dixon
SJ
,
Rizkalla
AS
.
One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis
.
ACS Appl Mater Inter
.
2012a
;
4
(
3
):
1490
9
.
16.
Costa
DO
,
Allo
BA
,
Klassen
R
,
Hutter
JL
,
Dixon
SJ
,
Rizkalla
AS
.
Control of surface topography in biomimetic calcium phosphate coatings
.
Langmuir
.
2012b
;
28
(
8
):
3871
80
.
17.
Dadsetan
M
,
Guda
T
,
Runge
MB
,
Mijares
D
,
LeGeros
RZ
,
LeGeros
JP
,
.
Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly (propylene fumarate) scaffolds
.
Acta Biomater
.
2015
;
18
:
9
20
.
18.
Eliaz
N
,
Metoki
N
.
Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications
.
Materials
.
2017
;
10
(
4
):
334
.
19.
European Molecular Biology Laboratory-European Bioinformatics Institute
.
20.
Farrell
MJ
,
Fisher
MB
,
Huang
AH
,
Shin
JI
,
Farrell
KM
,
Mauck
RL
.
Functional properties of bone marrow-derived MSC-based engineered cartilage are unstable with very long-term in vitro culture
.
J Biomech
.
2014
;
47
(
9
):
2173
82
.
21.
Gaytan
F
,
Morales
C
,
Reymundo
C
,
Tena-Sempere
M
.
Author Correction: a novel RGB-trichrome staining method for routine histological analysis of musculoskeletal tissues
.
Sci Rep
.
2021
;
11
(
1
):
18731
.
22.
George
SM
,
Nayak
C
,
Singh
I
,
Balani
K
.
Multifunctional hydroxyapatite composites for orthopedic applications: a review
.
ACS Biomater Sci Eng
.
2022
;
8
:
3162
86
.
23.
Goldman
SM
,
Barabino
GA
.
Spatial engineering of osteochondral tissue constructs through microfluidically directed differentiation of mesenchymal stem cells
.
Biores Open Access
.
2016
;
51
:
109
17
.
24.
Gronowicz
G
,
Jacobs
E
,
Peng
T
,
Zhu
L
,
Hurley
M
,
Kuhn
LT
.
*Calvarial bone regeneration is enhanced by sequential delivery of FGF-2 and BMP-2 from layer-by-layer coatings with a biomimetic calcium phosphate barrier layer
.
Tissue Eng Part A
.
2017
;
23
(
23–24
):
1490
501
.
25.
Guarino
V
,
Causa
F
,
Netti
PA
,
Ciapetti
G
,
Pagani
S
,
Martini
D
,
.
The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration
.
J Biomed Mater Res B Appl Biomater
.
2008
;
86
(
2
):
548
57
.
26.
Guarino
V
,
Veronesi
F
,
Marrese
M
,
Giavaresi
G
,
Ronca
A
,
Sandri
M
,
.
Needle-like ion-doped hydroxyapatite crystals influence osteogenic properties of PCL composite scaffolds
.
Biomed Mater
.
2016
;
11
:
015018
.
27.
Gullbrand
SE
,
Ashinsky
BG
,
Bonnevie
ED
,
Kim
DH
,
Engiles
JB
,
Smith
LJ
,
.
Long-term mechanical function and integration of an implanted tissue-engineered intervertebral disc
.
Sci Transl Med
.
2018a
;
10
(
468
):
eaau0670
.
28.
Gullbrand
SE
,
Kim
DH
,
Bonnevie
E
,
Ashinsky
BG
,
Smith
LJ
,
Elliott
DM
,
.
Towards the scale up of tissue engineered intervertebral discs for clinical application
.
Acta Biomater
.
2018b
;
70
:
154
64
.
29.
Guo
H
,
Sheng
J
,
Sheng
WB
,
Liang
WD
,
Wang
J
,
Xun
CH
.
An eight-year follow-up study on the treatment of single-level cervical spondylosis through intervertebral disc replacement and anterior cervical decompression and fusion
.
Orthop Surg
.
2020
;
12
(
3
):
717
26
.
30.
Habraken
W
,
Habibovic
P
,
Epple
M
,
Bohner
M
.
Calcium phosphates in biomedical applications: materials for the future
.
Mater Today
.
2016
;
19
(
2
):
69
87
.
31.
Hamilton
DJ
,
Séguin
CA
,
Wang
J
,
Pilliar
RM
,
Kandel
RA
;
BioEngineering of Skeletal Tissues Team
.
Formation of a nucleus pulposus-cartilage endplate construct in vitro
.
Biomaterials
.
2006
;
27
(
3
):
397
405
.
32.
Hwangbo
H
,
Lee
H
,
Roh
EJ
,
Kim
W
,
Joshi
HP
,
Kwon
SY
,
.
Bone tissue engineering via application of a collagen/hydroxyapatite 4D-printed biomimetic scaffold for spinal fusion
.
Appl Phys Rev
.
2021
;
8
(
2
):
021403
.
33.
Iu
J
,
Massicotte
E
,
Li
SQ
,
Hurtig
MB
,
Toyserkani
E
,
Santerre
JP
,
.
In vitro generated intervertebral discs: toward engineering tissue integration
.
Tissue Eng Part A
.
2017
;
23
(
17–18
):
1001
10
.
34.
Jaroszewicz
J
,
Idaszek
J
,
Choinska
E
,
Szlazak
K
,
Hyc
A
,
Osiecka-Iwan
A
,
.
Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple alkaline phosphatase based method
.
Mater Sci Eng C Mater Biol Appl
.
2019
;
96
:
319
28
.
35.
Jiang
J
,
Liu
W
,
Xiong
Z
,
Hu
Y
,
Xiao
J
.
Effects of biomimetic hydroxyapatite coatings on osteoimmunomodulation
.
Biomater Adv
.
2022
;
134
:
112640
.
36.
Jiao
F
,
Zhao
Y
,
Sun
Q
,
Huo
B
.
Spreading area and shape regulate the apoptosis and osteogenesis of mesenchymal stem cells on circular and branched micropatterned islands
.
J Biomed Mater Res A
.
2020
;
108
(
10
):
2080
9
.
37.
Karageorgiou
V
,
Kaplan
D
.
Porosity of 3D biomaterial scaffolds and osteogenesis
.
Biomaterials
.
2005
;
26
(
27
):
5474
91
.
38.
Kawamoto
T
,
Shimizu
M
.
A method for preparing whole-body sections suitable for autoradiographic, histological and histochemical studies
.
Stain Technol
.
1986
;
61
(
3
):
169
83
.
39.
Kim
SS
,
Gwak
SJ
,
Kim
BS
.
Orthotopic bone formation by implantation of apatite-coated poly (lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2
.
J Biomed Mater Res A
.
2008
;
87
(
1
):
245
53
.
40.
Kim
DH
,
Martin
JT
,
Gullbrand
SE
,
Elliott
DM
,
Smith
LJ
,
Smith
HE
,
.
Fabrication, maturation, and implantation of composite tissue-engineered total discs formed from native and mesenchymal stem cell combinations
.
Acta Biomater
.
2020
;
114
:
53
62
.
41.
Koju
N
,
Sikder
P
,
Ren
Y
,
Zhou
H
,
Bhaduri
SB
.
Biomimetic coating technology for orthopedic implants
.
Curr Opin Chem Eng
.
2017
;
15
:
49
55
.
42.
Lee
JH
,
Jang
HL
,
Lee
KM
,
Baek
HR
,
Jin
K
,
Noh
JH
.
Cold-spray coating of hydroxyapatite on a three-dimensional polyetheretherketone implant and its biocompatibility evaluated by in vitro and in vivo minipig model
.
J Biomed Mater Res B Appl Biomater
.
2017
;
105
(
3
):
647
57
.
43.
Liu
H
,
Xu
GW
,
Wang
YF
,
Zhao
HS
,
Xiong
S
,
Wu
Y
,
.
Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop
.
Biomaterials
.
2015
;
49
:
103
12
.
44.
Liu
Y
,
Yang
S
,
Cao
L
,
Zhang
X
,
Wang
J
,
Liu
C
.
Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds
.
Mater Sci Eng C Mater Biol Appl
.
2020
;
110
:
110622
.
45.
Lu
X
,
Leng
Y
.
Theoretical analysis of calcium phosphate precipitation in simulated body fluid
.
Biomaterials
.
2005
;
26
(
10
):
1097
108
.
46.
Martin
JT
,
Gullbrand
SE
,
Kim
DH
,
Ikuta
K
,
Pfeifer
CG
,
Ashinsky
BG
,
.
In vitro maturation and in vivo integration and function of an engineered cell-seeded disc-like angle ply structure (DAPS) for total disc arthroplasty
.
Sci Rep
.
2017
;
7
:
15765
.
47.
Mavrogenis
AF
,
Dimitriou
R
,
Parvizi
J
,
Babis
GC
.
Biology of implant osseointegration
.
J Musculoskelet Neuronal Interact
.
2009
;
9
(
2
):
61
71
.
48.
Mikos
AG
,
Herring
SW
,
Ochareon
P
,
Elisseeff
J
,
Lu
HH
,
Kandel
R
,
.
Engineering complex tissues
.
Tissue Eng
.
2006
;
12
(
12
):
3307
39
.
49.
Miszuk
JM
,
Xu
T
,
Childs
JD
,
Yao
Q
,
Fang
F
,
Hong
Z
,
.
Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation
.
Appl Mater Today
.
2018
;
10
:
194
202
.
50.
Mondal
S
,
Pal
U
.
3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications
.
J Drug Deliv Sci Technol
.
2019
;
53
:
101131
.
51.
National Library of Medicine
.
Bethesda: Bos taurus osteocalcin gene, complete cds
. [cited 2022 Oct 13]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/EF673278.1
52.
Nie
W
,
Gao
Y
,
McCoul
DJ
,
Gillispie
GJ
,
Zhang
YZ
,
Liang
L
,
.
Rapid mineralization of hierarchical poly (l-lactic acid)/poly (ε-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration
.
Int J Nanomedicine
.
2019
;
14
:
3929
41
.
53.
Olivares-Navarrete
R
,
Lee
EM
,
Smith
K
,
Hyzy
SL
,
Doroudi
M
,
Williams
JK
,
.
Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli
.
PLoS One
.
2017
;
12
:
e0170312
.
54.
Olvera
D
,
Sathy
BN
,
Kelly
DJ
.
Spatial presentation of tissue-specific extracellular matrix components along electrospun scaffolds for tissue engineering the bone-ligament interface
.
ACS Biomater Sci Eng
.
2020
;
6
(
9
):
5145
61
.
55.
Pang
S
,
He
Y
,
He
P
,
Luo
X
,
Guo
Z
,
Li
H
.
Fabrication of two distinct hydroxyapatite coatings and their effects on MC3T3-E1 cell behavior
.
Colloids Surf B Biointerfaces
.
2018
;
171
:
40
8
.
56.
Rao
PJ
,
Pelletier
MH
,
Walsh
WR
,
Mobbs
RJ
.
Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration
.
Orthop Surg
.
2014
;
6
(
2
):
81
9
.
57.
Raz
M
,
Moztarzadeh
F
,
Kordestani
SS
.
Synthesis, characterization and in-vitro study of chitosan/gelatin/calcium phosphate hybrid scaffolds fabricated via ion diffusion mechanism for bone tissue engineering
.
Silicon
.
2018
;
10
(
2
):
277
86
.
58.
Sastre
E
,
Nossin
Y
,
Jansen
I
,
Kops
N
,
Intini
C
,
Witte-Bouma
J
,
.
A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine
.
Biomaterials
.
2021
;
279
:
121187
.
59.
Séguin
CA
,
Grynpas
MD
,
Pilliar
RM
,
Waldman
SD
,
Kandel
RA
.
Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate
.
Spine
.
2004
;
29
(
12
):
1299
306
; discussion 1306–7. https://doi.org/10.1097/01.brs.0000127183.43765.af.
60.
Shim
KS
,
Kim
SE
,
Yun
YP
,
Jeon
DI
,
Kim
HJ
,
Park
K
,
.
Surface immobilization of biphasic calcium phosphate nanoparticles on 3D printed poly (caprolactone) scaffolds enhances osteogenesis and bone tissue regeneration
.
J Ind Eng Chem
.
2017
;
55
:
101
9
.
61.
Siriphannon
P
,
Kameshima
Y
,
Yasumori
A
,
Okada
K
,
Hayashi
S
.
Comparitive study of the formation of hydroxyapatite in simulated body fluid under static and flowing systems
.
J Biomed Mater Res
.
2002
;
60
(
1
):
175
85
.
62.
Stein
GS
,
Lian
JB
,
Owen
TA
.
Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation
.
FASEB J
.
1990
;
4
(
13
):
3111
23
.
63.
Surmenev
RA
,
Surmeneva
MA
,
Ivanova
AA
.
Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis: a review
.
Acta Biomater
.
2014
;
10
(
2
):
557
79
.
64.
Surmenev
RA
,
Surmeneva
MA
.
A critical review of decades of research on calcium phosphate-based coatings: how far are we from their widespread clinical applications
.
Curr Opin Biomed Eng
.
2019
;
10
(
35
):
35
44
.
65.
Tas
AC
,
Bhaduri
SB
.
Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid
.
J Mater Res
.
2004
;
19
(
9
):
2742
9
.
66.
Vaquette
C
,
Ivanovski
S
,
Hamlet
SM
,
Hutmacher
DW
.
Effect of culture conditions and calcium phosphate coating on ectopic bone formation
.
Biomaterials
.
2013
;
34
(
22
):
5538
51
.
67.
Wang
YK
,
Chen
CS
.
Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation
.
J Cell Mol Med
.
2013
;
17
(
7
):
823
32
.
68.
Wang
J
,
Wu
D
,
Zhang
Z
,
Li
J
,
Shen
Y
,
Wang
Z
,
.
Biomimetically ornamented rapid prototyping fabrication of an apatite-collagen-polycaprolactone composite construct with nano-micro-macro hierarchical structure for large bone defect treatment
.
ACS Appl Mater Inter
.
2015
;
7
(
47
):
26244
56
.
69.
Wang
J
,
Wang
M
,
Chen
F
,
Wei
Y
,
Chen
X
,
Zhou
Y
,
.
Nano-hydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis via BMP/Smad signaling pathway
.
Int J Nanomedicine
.
2019
;
14
:
7987
8000
.
70.
Xie
J
,
Zhang
D
,
Zhou
C
,
Yuan
Q
,
Ye
L
,
Zhou
X
.
Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction
.
Acta Biomater
.
2018
;
79
:
83
95
.
71.
Yang
F
,
Wolke
JGC
,
Jansen
JA
.
Biomimetic calcium phosphate coating on electrospun poly(ε-caprolactone) scaffolds for bone tissue engineering
.
Chem Eng J
.
2008
;
137
(
1
):
154
61
.
72.
Yang
D
,
Kim
H
,
Lee
JY
,
Jeon
H
,
Ryu
WH
.
Direct modulus measurement of single composite nanofibers of silk fibroin/hydroxyapatite nanoparticles
.
Composites Sci Technol
.
2016
;
122
:
113
21
.
73.
Zhang
J
,
Dalbay
MT
,
Luo
X
,
Vrij
E
,
Barbieri
D
,
Moroni
L
,
.
Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis
.
Acta Biomater
.
2017
;
57
:
487
97
.
You do not currently have access to this content.