The development of new therapies is tremendously hampered by the insufficient availability of human model systems suitable for preclinical research on disease target identification, drug efficacy, and toxicity. Thus, drug failures in clinical trials are too common and too costly. Animal models or standard 2D in vitro tissue cultures, regardless of whether they are human based, are regularly not representative of specific human responses. Approaching near human tissues and organs test systems is the key goal of organs-on-chips (OoC) technology. This technology is currently showing its potential to reduce both drug development costs and time-to-market, while critically lessening animal testing. OoC are based on human (stem) cells, potentially derived from healthy or disease-affected patients, thereby amenable to personalized therapy development. It is noteworthy that the OoC market potential goes beyond pharma, with the possibility to test cosmetics, food additives, or environmental contaminants. This (micro)tissue engineering-based technology is highly multidisciplinary, combining fields such as (developmental) biology, (bio)materials, microfluidics, sensors, and imaging. The enormous potential of OoC is currently facing an exciting new challenge: emulating cross-communication between tissues and organs, to simulate more complex systemic responses, such as in cancer, or restricted to confined environments, as occurs in osteoarthritis. This review describes key examples of multiorgan/tissue-on-chip approaches, or linked organs/tissues-on-chip, focusing on challenges and promising new avenues of this advanced model system. Additionally, major emphasis is given to the translation of established tissue engineering approaches, bottom up and top down, towards the development of more complex, robust, and representative (multi)organ/tissue-on-chip approaches.

1.
Achberger
K
,
Probst
C
,
Haderspeck
J
,
Bolz
S
,
Rogal
J
,
Chuchuy
J
,
.
Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform
.
Elife
.
2019
;
8
:
e46188
.
2.
Allwardt
V
,
Ainscough
AJ
,
Viswanathan
P
,
Sherrod
SD
,
McLean
JA
,
Haddrick
M
,
.
Translational roadmap for the organs-on-a-chip industry toward broad adoption
.
Bioengineering
.
2020
;
7
(
3
):
112
.
3.
An
F
,
Qu
Y
,
Luo
Y
,
Fang
N
,
Liu
Y
,
Gao
Z
,
.
A laminated microfluidic device for comprehensive preclinical testing in the drug ADME process
.
Sci Rep
.
2016
;
6
(
1
):
25022
.
4.
Artegiani
B
,
Hendriks
D
,
Beumer
J
,
Kok
R
,
Zheng
X
,
Joore
I
,
.
Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing
.
Nat Cell Biol
.
2020 Mar
;
22
(
3
):
321
31
.
5.
Baert
Y
,
Ruetschle
I
,
Cools
W
,
Oehme
A
,
Lorenz
A
,
Marx
U
,
.
A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model
.
Hum Reprod
.
2020
;
35
(
5
):
1029
44
.
6.
Bahmaee
H
,
Owen
R
,
Boyle
L
,
Perrault
CM
,
Garcia-Granada
AA
,
Reilly
GC
,
.
Design and evaluation of an osteogenesis-on-a-chip microfluidic device incorporating 3D cell culture
.
Front Bioeng Biotechnol
.
2020
;
8
(
1042
):
557111
.
7.
Baker
BM
,
Trappmann
B
,
Stapleton
SC
,
Toro
E
,
Chen
CS
.
Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients
.
Lab Chip
.
2013
;
13
(
16
):
3246
52
.
8.
Baker
LA
,
Tiriac
H
,
Clevers
H
,
DAJTic
T
.
Modeling pancreatic cancer with organoids
.
Trends Cancer
.
2016
;
2
(
4
):
176
90
.
9.
Barata
D
,
Provaggi
E
,
van Blitterswijk
C
,
Habibovic
P
.
Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactions
.
Lab Chip
.
2017
;
17
(
23
):
4134
47
.
10.
Barata
D
,
van Blitterswijk
C
,
Habibovic
P
.
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics
.
Acta Biomater
.
2016
;
34
:
1
20
.
11.
Benam
KH
,
Novak
R
,
Nawroth
J
,
Hirano-Kobayashi
M
,
Ferrante
TC
,
Choe
Y
,
.
Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip
.
Cell Syst
.
2016
;
3
(
5
):
456
e4
.
12.
Bhise
NS
,
Ribas
J
,
Manoharan
V
,
Zhang
YS
,
Polini
A
,
Massa
S
,
.
Organ-on-a-chip platforms for studying drug delivery systems
.
J Control Release
.
2014
;
190
:
82
93
.
13.
Brooks
JC
,
Judd
RL
,
Easley
CJ
.
Culture and sampling of primary adipose tissue in practical microfluidic systems
.
Methods Mol Biol
.
2017
;
1566
:
185
201
.
14.
Brown
DD
,
Dabbs
DJ
,
Lee
AV
,
McGuire
KP
,
Ahrendt
GM
,
Bhargava
R
,
.
Developing in vitro models of human ductal carcinoma in situ from primary tissue explants
.
Breast Cancer Res Treat
.
2015
;
153
(
2
):
311
21
.
15.
Bush
PG
,
Hodkinson
PD
,
Hamilton
GL
,
Hall
AC
.
Viability and volume of in situ bovine articular chondrocytes-changes following a single impact and effects of medium osmolarity
.
Osteoarthritis Cartilage
.
2005
;
13
(
1
):
54
65
.
16.
Carvalho
MR
,
Barata
D
,
Teixeira
LM
,
Giselbrecht
S
,
Reis
RL
,
Oliveira
JM
,
.
Colorectal tumor-on-a-chip system: a 3D tool for precision onco-nanomedicine
.
Sci Adv
.
2019
;
5
(
5
):
eaaw1317
.
17.
Chang
SY
,
Weber
EJ
,
Sidorenko
VS
,
Chapron
A
,
Yeung
CK
,
Gao
C
,
.
Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity
.
JCI Insight
.
2017
;
2
(
22
):e95978.http://dx.doi.org/10.1172/jci.insight.95978.
18.
Cochrane
A
,
Albers
HJ
,
Passier
R
,
Mummery
CL
,
van den Berg
A
,
Orlova
VV
,
.
Advanced in vitro models of vascular biology: human induced pluripotent stem cells and organ-on-chip technology
.
Adv Drug Deliv Rev
.
2019
;
140
:
68
77
.
19.
Convery
N
,
Gadegaard
NJM
.
. 30 years of microfluidics
.
Micro Nano Eng
.
2019
;
2
:
76
91
.
20.
Dekkers
JF
,
Wiegerinck
CL
,
De Jonge
HR
,
Bronsveld
I
,
Janssens
HM
,
De Winter-de Groot
KM
,
.
A functional CFTR assay using primary cystic fibrosis intestinal organoids
.
Nat Med
.
2013
;
19
(
7
):
939
45
.
21.
Domachuk
P
,
Tsioris
K
,
Omenetto
FG
,
Kaplan
DL
.
Bio-microfluidics: biomaterials and biomimetic designs
.
Adv Mater
.
2010
;
22
(
2
):
249
60
.
22.
Driehuis
E
,
Clevers
H
.
CRISPR/Cas 9 genome editing and its applications in organoids
.
Am J Physiol Gastrointest Liver Physiol
.
2017
;
312
(
3
):
G257
G65
.
23.
Du
G
,
Fang
Q
,
den Toonder
JMJ
.
Microfluidics for cell-based high throughput screening platforms – a review
.
Anal Chim Acta
.
2016
;
903
:
36
50
.
24.
Duval
K
,
Grover
H
,
Han
L-H
,
Mou
Y
,
Pegoraro
AF
,
Fredberg
J
,
.
Modeling physiological events in 2D vs. 3D cell culture
.
Physiology
.
2017
;
32
(
4
):
266
77
.
25.
Edington
CD
,
Chen
WLK
,
Geishecker
E
,
Kassis
T
,
Soenksen
LR
,
Bhushan
BM
,
.
Interconnected microphysiological systems for quantitative biology and pharmacology studies
.
Sci Rep
.
2018
;
8
(
1
):
4530
.
26.
Ertl
P
,
Sticker
D
,
Charwat
V
,
Kasper
C
,
Lepperdinger
G
.
Lab-on-a-chip technologies for stem cell analysis
.
Trends Biotechnol
.
2014
;
32
(
5
):
245
53
.
27.
Everitt
JI
.
The future of preclinical animal models in pharmaceutical discovery and development: a need to bring in cerebro to the in vivo discussions
.
Toxicol Pathol
.
2015 Jan
;
43
(
1
):
70
7
.
28.
Gao
D
,
Li
H
,
Wang
N
,
Lin
JM
.
Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer
.
Anal Chem
.
2012
;
84
(
21
):
9230
7
.
29.
Geraili
A
,
Jafari
P
,
Hassani
MS
,
Araghi
BH
,
Mohammadi
MH
,
Ghafari
AM
,
.
Controlling differentiation of stem cells for developing personalized organ-on-chip platforms
.
Adv Healthc Mater
.
2018
;
7
(
2
):
1700426
.
30.
Gnecco
JS
,
Ding
T
,
Smith
C
,
Lu
J
,
Bruner-Tran
KL
,
Osteen
KG
.
Hemodynamic forces enhance decidualization via endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic model of the human endometrium
.
Hum Reprod
.
2019
;
34
(
4
):
702
14
.
31.
Gottardi
R
.
Load-induced osteoarthritis on a chip
.
Nat Biomed Eng
.
2019
;
3
(
7
):
502
3
.
32.
Halldorsson
S
,
Lucumi
E
,
Gómez-Sjöberg
R
,
Fleming
RMT
.
Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices
.
Biosens Bioelectron
.
2015
;
63
:
218
31
.
33.
Hassell
BA
,
Goyal
G
,
Lee
E
,
Sontheimer-Phelps
A
,
Levy
O
,
Chen
CS
,
.
Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro
.
Cell Rep
.
2017
;
21
(
2
):
508
16
.
34.
Herland
A
,
Maoz
BM
,
Das
D
,
Somayaji
MR
,
Prantil-Baun
R
,
Novak
R
,
.
Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips
.
Nat Biomed Eng
.
2020
;
4
(
4
):
421
36
.
35.
Huh
D
,
Matthews
BD
,
Mammoto
A
,
Montoya-Zavala
M
,
Hsin
HY
,
Ingber
DE
.
Reconstituting organ-level lung functions on a chip
.
Science
.
2010a
;
328
(
5986
):
1662
8
.
36.
Huh
D
,
Matthews
BD
,
Mammoto
A
,
Montoya-Zavala
M
,
Hsin
HY
,
Ingber
DE
.
Reconstituting organ-level lung functions on a chip
.
Science
.
2010b
;
328
(
5986
):
1662
8
.
37.
Huh
D
,
Hamilton
GA
,
Ingber
DE
.
From 3D cell culture to organs-on-chips
.
Trends Cell Biol
.
2011a
;
21
(
12
):
745
54
.
38.
Huh
D
,
Hamilton
GA
,
Ingber
DE
.
From 3D cell culture to organs-on-chips
.
Trends Cell Biol
.
2011b
;
21
(
12
):
745
54
.
39.
Jeong
SY
,
Lee
JH
,
Shin
Y
,
Chung
S
,
Kuh
HJ
.
Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment
.
PLoS One
.
2016
;
11
(
7
):
e0159013
.
40.
Johnson
CI
,
Argyle
DJ
,
Clements
DN
.
In vitro models for the study of osteoarthritis
.
Vet J
.
2016
;
209
:
40
9
.
41.
Kaarj
K
,
Yoon
J-YJM
.
Methods of delivering mechanical stimuli to organ-on-a-chip
.
Micromachines
.
2019
;
10
(
10
):
700
.
42.
Kankala
R
,
Xu
X-M
,
Liu
C-G
,
Chen
A-Z
,
Wang
S-B
.
3D-printing of microfibrous porous scaffolds based on hybrid approaches for bone tissue engineering
.
Polymers
.
2018
;
10
(
7
):
807
.
43.
Kim
HJ
,
Huh
D
,
Hamilton
G
,
Ingber
DE
.
Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
.
Lab Chip
.
2012
;
12
(
12
):
2165
74
.
44.
Knowlton
S
,
Yenilmez
B
,
SJTib
T
.
Towards single-step biofabrication of organs on a chip via 3D printing
.
Trends Biotechnol
.
2016
;
34
(
9
):
685
8
.
45.
Kopper
O
,
de Witte
CJ
,
Lõhmussaar
K
,
Valle-Inclan
JE
,
Hami
N
,
Kester
L
,
.
An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity
.
Nat Med
.
2019
;
25
(
5
):
838
49
.
46.
Lancaster
MA
,
Knoblich
JA
.
Organogenesis in a dish: modeling development and disease using organoid technologies
.
Science
.
2014
;
345
(
6194
):
1247125
.
47.
Langerak
N
,
Ahmed
HMM
,
Li
Y
,
Middel
IR
,
Eslami Amirabadi
H
,
Malda
J
,
.
A theoretical and experimental study to optimize cell differentiation in a novel intestinal chip
.
Front Bioeng Biotechnol
.
2020
;
8
(
763
):
763
.
48.
Lee
J-H
,
Kim
S-K
,
Khawar
IA
,
Jeong
S-Y
,
Chung
S
,
Kuh
H-J
,
.
Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance
.
J Exp Clin Cancer Res
.
2018
;
37
(
1
):
4
12
.
49.
Lee
SY
,
Sung
JH
.
Gut-liver on a chip toward an in vitro model of hepatic steatosis
.
Biotechnol Bioeng
.
2018
;
115
(
11
):
2817
27
.
50.
Liu
W
,
Song
J
,
Du
X
,
Zhou
Y
,
Li
Y
,
Li
R
,
.
AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model
.
Acta Biomater
.
2019
;
91
:
195
208
.
51.
Lochovsky
C
,
Yasotharan
S
,
Günther
AJLC
.
Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices
.
Lab Chip
.
2012
;
12
(
3
):
595
601
.
52.
Low
LA
,
Mummery
C
,
Berridge
BR
,
Austin
CP
,
Tagle
DA
.
Organs-on-chips: into the next decade
.
Nat Rev Drug Discov
.
2021a
;
20
(
5
):
345
61
.
53.
Low
LA
,
Mummery
C
,
Berridge
BR
,
Austin
CP
,
Tagle
DA
.
Organs-on-chips: Into the next decade
.
Nat Rev Drug Discov
.
2021b
;
20
(
5
):
345
61
.
54.
Low
LA
,
Sutherland
M
,
Lumelsky
N
,
Selimovic
S
,
Lundberg
MS
,
Tagle
DA
.
Organs-on-a-chip
.
Adv Exp Med Biol
.
2020
;
1230
:
27
42
.
55.
Mandrycky
C
,
Wang
Z
,
Kim
K
,
Kim
D-HJB
.
3D bioprinting for engineering complex tissues
.
Biotechnol Adv
.
2016
;
34
(
4
):
422
34
.
56.
Maoz
BM
,
Herland
A
,
Henry
OYF
,
Leineweber
WD
,
Yadid
M
,
Doyle
J
,
.
Organs-on-chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities
.
Lab Chip
.
2017
;
17
(
13
):
2294
302
.
57.
Marx
U
.
Trends in cell culture technology
. In:
Balls
M
,
Combes
RD
,
Bhogal
N
, editors.
New technologies for toxicity testing
.
New York
:
Springer US
;
2012
. p.
26
46.
.
58.
Maschmeyer
I
,
Lorenz
AK
,
Schimek
K
,
Hasenberg
T
,
Ramme
AP
,
Hübner
J
,
.
A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents
.
Lab Chip
.
2015a
;
15
(
12
):
2688
99
.
59.
Maschmeyer
I
,
Lorenz
AK
,
Schimek
K
,
Hasenberg
T
,
Ramme
AP
,
Hübner
J
,
.
A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents
.
Lab Chip
.
2015b
;
15
(
12
):
2688
99
.
60.
Matano
M
,
Date
S
,
Shimokawa
M
,
Takano
A
,
Fujii
M
,
Ohta
Y
,
.
Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids
.
Nat Med
.
2015
;
21
(
3
):
256
62
.
61.
Mead
BE
,
Karp
JM
.
All models are wrong, but some organoids may be useful
.
Genome Biol
.
2019
;
20
(
1
):
66
.
62.
Middelkamp
H
,
van der Meer
A
,
Hummel
M
,
Stamatialis
D
,
Mummery
C
,
Passier
R
,
.
Organs-on-chips in drug development: the importance of involving stakeholders in early health technology assessment
.
Appl In Vitro Toxicol
.
2016
;
2
:10.1089/aivt.2015.0029.
63.
Miller
CP
,
Tsuchida
C
,
Zheng
Y
,
Himmelfarb
J
,
Akilesh
SJN
.
A 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis
.
Neoplasia
.
2018
;
20
(
6
):
610
20
.
64.
Moradi
E
,
Jalili-Firoozinezhad
S
,
Solati-Hashjin
M
.
Microfluidic organ-on-a-chip models of human liver tissue
.
Acta Biomater
.
2020
;
116
:
67
83
.
65.
Moroni
L
,
Burdick
JA
,
Highley
C
,
Lee
SJ
,
Morimoto
Y
,
Takeuchi
S
,
.
Biofabrication strategies for 3D in vitro models and regenerative medicine
.
Nat Rev Mater
.
2018
;
3
(
5
):
21
37
.
66.
Nawroth
JC
,
Barrile
R
,
Conegliano
D
,
van Riet
S
,
Hiemstra
PS
,
Villenave
R
.
Stem cell-based lung-on-chips: the best of both worlds
.
Adv Drug Deliv Rev
.
2019
;
140
:
12
32
.
67.
Nouri-Goushki
M
,
Sharma
A
,
Sasso
L
,
Zhang
S
,
Van der Eerden
BCJ
,
Staufer
U
,
.
Submicron patterns-on-a-chip: fabrication of a microfluidic device incorporating 3D printed surface ornaments
.
ACS Biomater Sci Eng
.
2019
;
5
(
11
):
6127
36
.
68.
Novak
R
,
Ingram
M
,
Marquez
S
,
Das
D
,
Delahanty
A
,
Herland
A
,
.
Robotic fluidic coupling and interrogation of multiple vascularized organ chips
.
Nat Biomed Eng
.
2020
;
4
(
4
):
407
20
.
69.
Occhetta
P
,
Mainardi
A
,
Votta
E
,
Vallmajo-Martin
Q
,
Ehrbar
M
,
Martin
I
,
.
Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model
.
Nat Biomed Eng
.
2019 Jul
;
3
(
7
):
545
57
.
70.
Oleaga
C
,
Bernabini
C
,
Smith
AST
,
Srinivasan
B
,
Jackson
M
,
McLamb
W
,
.
Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs
.
Sci Rep
.
2016
;
6
(
1
):
20030
.
71.
Oleaga
C
,
Riu
A
,
Rothemund
S
,
Lavado
A
,
McAleer
CW
,
Long
CJ
,
.
Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system
.
Biomaterials
.
2018
;
182
:
176
90
.
72.
Oleaga
C
,
Lavado
A
,
Riu
A
,
Rothemund
S
,
Carmona‐Moran
CA
,
Persaud
K
,
.
Long-term electrical and mechanical function monitoring of a human-on-a-chip system
.
2019
;
29
(
8
):
1805792
.
73.
Pampaloni
F
,
Reynaud
EG
,
Stelzer
EHK
.
The third dimension bridges the gap between cell culture and live tissue
.
Nat Rev Mol Cell Biol
.
2007
;
8
(
10
):
839
45
.
74.
Park
JY
,
Yoo
SJ
,
Hwang
CM
,
Lee
S-H
.
Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow
.
Lab Chip
.
2009
;
9
(
15
):
2194
202
.
75.
Park
S-H
,
Sim
WY
,
Min
B-H
,
Yang
SS
,
Khademhosseini
A
,
Kaplan
DL
.
Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation
.
PLoS One
.
2012
;
7
(
9
):
e46689
.
76.
Park
JY
,
Jang
J
,
Kang
H-W
.
3D Bioprinting and its application to organ-on-a-chip
.
Microelectron Eng
.
2018
;
200
:
1
11
.
77.
Park
SE
,
Georgescu
A
,
Huh
D
.
Organoids-on-a-chip
.
Science
.
2019
;
364
(
6444
):
960
5
.
78.
Peck
RW
,
Hinojosa
CD
,
Hamilton
GA
.
Organs-on-chips in clinical pharmacology: putting the patient into the center of treatment selection and drug development
.
Clin Pharmacol Ther
.
2020
;
107
(
1
):
181
5
.
79.
Petrosyan
A
,
Cravedi
P
,
Villani
V
,
Angeletti
A
,
Manrique
J
,
Renieri
A
,
.
A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier
.
Nat Commun
.
2019
;
10
(
1
):
3656
.
80.
Pound
P
,
Ritskes-Hoitinga
M
.
Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail
.
J Transl Med
.
2018
;
16
(
1
):
304
.
81.
Puca
L
,
Bareja
R
,
Prandi
D
,
Shaw
R
,
Benelli
M
,
Karthaus
WR
,
.
Patient derived organoids to model rare prostate cancer phenotypes
.
Nat Commun
.
2018
;
9
(
1
):
2404
10
.
82.
Ramme
AP
,
Koenig
L
,
Hasenberg
T
,
Schwenk
C
,
Magauer
C
,
Faust
D
,
.
Towards an autologous iPSC-derived patient-on-a-chip
.
bioRxiv
.
2018
. doi: https://doi.org/10.1101/376970https://doi.org/10.1101/376970.
83.
Regehr
KJ
,
Domenech
M
,
Koepsel
JT
,
Carver
KC
,
Ellison-Zelski
SJ
,
Murphy
WL
,
.
Biological implications of polydimethylsiloxane-based microfluidic cell culture
.
Lab Chip
.
2009
;
9
(
15
):
2132
9
.
84.
Ronaldson-Bouchard
K
,
Vunjak-Novakovic
G
.
Organs-on-a-chip: a fast track for engineered human tissues in drug development
.
Cell Stem Cell
.
2018
;
22
(
3
):
310
24
.
85.
Rothbauer
M
,
Zirath
H
,
Ertl
P
.
Recent advances in microfluidic technologies for cell-to-cell interaction studies
.
Lab Chip
.
2018
;
18
(
2
):
249
70
.
86.
Saeidnia
S
,
Manayi
A
,
Abdollahi
M
.
From in vitro experiments to in vivo and clinical studies: pros and cons
.
Curr Drug Discov Technol
.
2015
;
12
(
4
):
218
24
.
87.
Sakolish
C
,
Weber
EJ
,
Kelly
EJ
,
Himmelfarb
J
,
Mouneimne
R
,
Grimm
FA
,
.
Technology transfer of the microphysiological systems: a case study of the human proximal tubule tissue chip
.
Sci Rep
.
2018
;
8
(
1
):
14882
.
88.
Sateesh
J
,
Guha
K
,
Dutta
A
,
Sengupta
P
,
Srinivasa Rao
K
.
Regenerating re-absorption function of proximal convoluted tubule using microfluidics for kidney-on-chip applications
.
SN Appl Sci
.
2019
;
2
(
1
):
39
.
89.
Sato
T
,
Van Es
JH
,
Snippert
HJ
,
Stange
DE
,
Vries
RG
,
Van Den Born
M
,
.
Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts
.
Nature
.
2011
;
469
(
7330
):
415
8
.
90.
Shim
K-Y
,
Lee
D
,
Han
J
,
Nguyen
N-T
,
Park
S
,
Sung
JH
.
Microfluidic gut-on-a-chip with three-dimensional villi structure
.
Biomed Microdevices
.
2017
;
19
(
2
):
37
.
91.
Stone
HA
,
Stroock
AD
,
Ajdari
AJARFM
.
Engineering flows in small devices: microfluidics toward a lab-on-a-chip
.
Ann Rev Fluid Mech
.
2004
;
36
:
381
411
.
92.
Sung
JH
,
Srinivasan
B
,
Esch
MB
,
McLamb
WT
,
Bernabini
C
,
Shuler
ML
,
.
Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure
.
Exp Biol Med
.
2014a
;
239
(
9
):
1225
39
.
93.
Sung
JH
,
Srinivasan
B
,
Esch
MB
,
McLamb
WT
,
Bernabini
C
,
Shuler
ML
,
.
Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure
.
Exp Biol Med
.
2014b
;
239
(
9
):
1225
39
.
94.
Suvarnapathaki
S
,
Wu
X
,
Lantigua
D
,
Nguyen
MA
,
Camci-Unal
G
.
Breathing life into engineered tissues using oxygen-releasing biomaterials
.
NPG Asia Mater
.
2019
;
11
(
1
):
65
.
95.
Takasato
M
,
Pei
XE
,
Chiu
HS
,
Maier
B
,
Baillie
GJ
,
Ferguson
C
,
.
Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis
.
Nature
.
2015
;
526
(
7574
):
564
8
.
96.
Takeda
H
,
Kataoka
S
,
Nakayama
M
,
Ali
MAE
,
Oshima
H
,
Yamamoto
D
,
.
CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes
.
Proc Natl Acad Sci USA
.
2019
;
116
(
31
):
15635
44
.
97.
Ting
L
,
Feghhi
S
,
Karchin
A
,
Tooley
W
,
White
NJ
,
Sniadecki
N
.
Clot-on-a-chip: a microfluidic device to study platelet aggregation and contractility under shear
.
Blood
.
2013
;
122
(
21
):
2363
3
.
98.
Toepke
MW
,
Beebe
DJJLC
.
PDMS absorption of small molecules and consequences in microfluidic applications
.
Lab Chip
.
2006
;
6
(
12
):
1484
6
.
99.
Trapecar
M
,
Communal
C
,
Velazquez
J
,
Maass
CA
,
Huang
Y-J
,
Schneider
K
,
.
Gut-Liver physiomimetics reveal paradoxical modulation of IBD-related inflammation by short-chain fatty acids
.
Cell Syst
.
2020
;
10
(
3
):
223
9.e9
.
100.
van Duinen
V
,
Stam
W
,
Borgdorff
V
,
Reijerkerk
A
,
Orlova
V
,
Vulto
P
,
.
Standardized and scalable assay to study perfused 3d angiogenic sprouting of ipsc-derived endothelial cells in vitro
.
J Vis Exp
.
2019
;
6
(
153
):
59678
.
101.
Vernetti
L
,
Gough
A
,
Baetz
N
,
Blutt
S
,
Broughman
JR
,
Brown
JA
,
.
Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle
.
Sci Rep
.
2017
;
7
:
42296
.
102.
Waheed
S
,
Cabot
JM
,
Macdonald
NP
,
Lewis
T
,
Guijt
RM
,
Paull
B
,
.
3D printed microfluidic devices: enablers and barriers
.
Lab Chip
.
2016
;
16
(
11
):
1993
2013
.
103.
Wang
X
,
Liu
Z
,
Pang
Y
.
Concentration gradient generation methods based on microfluidic systems
.
RSC Adv
.
2017
;
7
(
48
):
29966
84
.
104.
Watson
DE
,
Hunziker
R
,
Wikswo
JP
.
Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology
.
Exp Biol Med
.
2017
;
242
(
16
):
1559
72
.
105.
Whitesides
GM
.
The origins and the future of microfluidics
.
Nature
.
2006
;
442
(
7101
):
368
73
.
106.
Wikswo
JP
,
Block
FE
3rd
,
Cliffel
DE
,
Goodwin
CR
,
Marasco
CC
,
Markov
DA
,
.
Engineering challenges for instrumenting and controlling integrated organ-on-chip systems
.
IEEE Trans Biomed Eng
.
2013a
;
60
(
3
):
682
90
.
107.
Wikswo
JP
,
Curtis
EL
,
Eagleton
ZE
,
Evans
BC
,
Kole
A
,
Hofmeister
LH
,
.
Scaling and systems biology for integrating multiple organs-on-a-chip
.
Lab Chip
.
2013b
;
13
(
18
):
3496
511
.
108.
Winkler
TE
,
Feil
M
,
Stronkman
EFGJ
,
Matthiesen
I
,
Herland
A
.
Low-cost microphysiological systems: feasibility study of a tape-based barrier-on-chip for small intestine modeling
.
Lab Chip
.
2020
;
20
(
7
):
1212
26
.
109.
Wnorowski
A
,
Yang
H
,
Wu
JC
.
Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models
.
Adv Drug Deliv Rev
.
2019
;
140
:
3
11
.
110.
Xiao
S
,
Coppeta
JR
,
Rogers
HB
,
Isenberg
BC
,
Zhu
J
,
Olalekan
SA
,
.
A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle
.
Nat Commun
.
2017
;
8
(
1
):
14584
.
111.
Yeung
CK
,
Koenig
P
,
Countryman
S
,
Thummel
KE
,
Himmelfarb
J
,
Kelly
EJ
.
Tissue chips in space – challenges and opportunities
.
Clin Transl Sci
.
2020
;
13
(
1
):
8
10
.
112.
Yue
K
,
Trujillo-de Santiago
G
,
Alvarez
MM
,
Tamayol
A
,
Annabi
N
,
Khademhosseini
A
.
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
.
Biomaterials
.
2015
;
73
:
254
71
.
113.
Zambito
G
,
Gaspar
N
,
Ridwan
Y
,
Hall
MP
,
Shi
C
,
Kirkland
TA
,
.
Evaluating brightness and spectral properties of click beetle and firefly luciferases using luciferin analogues: identification of preferred pairings of luciferase and substrate for in vivo bioluminescence imaging
.
Mol Imaging Biol
.
2020
;
22
(
6
):
1523
31
.
114.
Zhang
YS
,
Arneri
A
,
Bersini
S
,
Shin
S-R
,
Zhu
K
,
Goli-Malekabadi
Z
,
.
Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
.
Biomaterials
.
2016
;
110
:
45
59
.
115.
Zhang
YS
,
Aleman
J
,
Shin
SR
,
Kilic
T
,
Kim
D
,
Mousavi Shaegh
SA
,
.
Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors
.
Proc Natl Acad Sci USA
.
2017a
;
114
(
12
):
E2293
E302
.
116.
Zhang
YS
,
Aleman
J
,
Shin
SR
,
Kilic
T
,
Kim
D
,
Mousavi Shaegh
SA
,
.
Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors
.
Proc Natl Acad Sci USA
.
2017b
;
114
(
12
):
E2293
E302
.
117.
Zhao
Y
,
Rafatian
N
,
Wang
EY
,
Wu
Q
,
Lai
BFL
,
Lu
RX
,
.
Towards chamber specific heart-on-a-chip for drug testing applications
.
Adv Drug Deliv Rev
.
2020
;
165–6
:
60
76
.
118.
Zhu
M
,
Wang
Y
,
Ferracci
G
,
Zheng
J
,
Cho
N-J
,
Lee
BH
.
Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency
.
Sci Rep
.
2019
;
9
(
1
):
6863
.
You do not currently have access to this content.