Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair. In this review, we describe the basic morphological and physiological specifics of the heart and cardiac tissues and introduce the readers to the fundamental principles underlying 3D printing technology and some of the materials/approaches which have been used to date for cardiac repair. By summarizing recent progress in 3D printing of cardiac tissue and valves with respect to the key features of cardiovascular tissue (such as contractility, conductivity, and vascularization), we highlight how 3D printing can facilitate surgical planning and provide custom-fit implants and properties that match those from the native heart. Finally, we also discuss the suitability of this technology in the design and fabrication of custom-made devices intended for the maturation of the cardiac tissue, a process that has been shown to increase the viability of implants. Altogether this review shows that 3D printing and bioprinting are versatile and highly modulative technologies with wide applications in cardiac regeneration and beyond.

1.
Adib
AA
,
Sheikhi
A
,
Shahhosseini
M
,
Simeunović
A
,
Wu
S
,
Castro
CE
,
Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering
.
Biofabrication
.
2020
;
12
(
4
):
045006
.
2.
Aguilar
IN
,
Olivos
DJ
 3rd
,
Brinker
A
,
Alvarez
MB
,
Smith
LJ
,
Chu
TG
,
Scaffold-free bioprinting of mesenchymal stem cells using the Regenova printer: Spheroid characterization and osteogenic differentiation
.
Bioprinting
.
2019
;
15
:
e00050
.
3.
Ahmed
RE
,
Anzai
T
,
Chanthra
N
,
Uosaki
H
.
A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes
.
Front Cell Dev Biol
.
2020
;
8
(
178
):
178
.
4.
Albanna
M
,
Binder
KW
,
Murphy
SV
,
Kim
J
,
Qasem
SA
,
Zhao
W
,
In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds
.
Sci Rep
.
2019
;
9
(
1
):
1856
.
5.
Angelopoulos
I
,
Allenby
MC
,
Lim
M
,
Zamorano
M
.
Engineering inkjet bioprinting processes toward translational therapies
.
Biotechnol Bioeng
.
2020
;
117
(
1
):
272
84
.
6.
Anwar
S
,
Singh
GK
,
Miller
J
,
Sharma
M
,
Manning
P
,
Billadello
JJ
,
3D Printing is a Transformative Technology in Congenital Heart Disease
.
JACC Basic Transl Sci
.
2018
;
3
(
2
):
294
312
.
7.
Atala
A
.
Tissue Engineering and Regenerative Medicine: Concepts for Clinical Application
.
Rejuvenation Res
.
2004
;
7
(
1
):
15
31
.
8.
Ayan
B
,
Heo
DN
,
Zhang
Z
,
Dey
M
,
Povilianskas
A
,
Drapaca
C
,
Aspiration-assisted bioprinting for precise positioning of biologics
.
Sci Adv
.
2020
;
6
(
10
):
eaaw5111
.
9.
Bagheri
A
,
Jin
J
.
Photopolymerization in 3D Printing
.
ACS Appl Polym Mater
.
2019
;
1
(
4
):
593
611
.
10.
Banerjee M
N
,
Bolli
R
,
Hare J
M
.
Clinical Studies of Cell Therapy in Cardiovascular Medicine: Recent Developments and Future Directions
.
Circ Res
.
2018
;
123
(
2
):
266
87
.
11.
Banik
BL
,
Brown
JL
.
3D-Printed Bioreactor Enhances Potential for Tendon Tissue Engineering
.
Regen Eng Transl Med
.
2020
;
6
:
419
28
.
12.
Bejleri
D
,
Streeter
BW
,
Nachlas
ALY
,
Brown
ME
,
Gaetani
R
,
Christman
KL
,
A Bioprinted Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair
.
Adv Healthcare Mater
.
2018
;
7
(
23
):
1800672
.
13.
Bergmann
O
,
Bhardwaj
RD
,
Bernard
S
,
Zdunek
S
,
Barnabé-Heider
F
,
Walsh
S
,
Evidence for Cardiomyocyte Renewal in Humans
.
Science
.
2009
;
324
(
5923
):
98
.
14.
Besser
RR
,
Ishahak
M
,
Mayo
V
,
Carbonero
D
,
Claure
I
,
Agarwal
A
.
Engineered Microenvironments for Maturation of Stem Cell Derived Cardiac Myocytes
.
Theranostics
.
2018
;
8
(
1
):
124
40
.
15.
Birla
RK
,
Williams
SK
.
3D bioprinting and its potential impact on cardiac failure treatment: An industry perspective
.
APL Bioeng
.
2020
;
4
(
1
):
010903
.
16.
Blakely
AM
,
Manning
KL
,
Tripathi
A
,
Morgan
JR
.
Bio-Pick, Place, and Perfuse: A New Instrument for Three-Dimensional Tissue Engineering
.
Tissue Eng Part C Methods
.
2015
;
21
(
7
):
737
46
.
17.
Boehler
RM
,
Graham
JG
,
Shea
LD
.
Tissue engineering tools for modulation of the immune response
.
Biotechniques
.
2011
;
51
(
4
):
239
40
, 242, 244 passim.
18.
Borovjagin
AV
,
Ogle
BM
,
Berry
JL
,
Zhang
J
.
From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues
.
Circ Res
.
2017
;
120
(
1
):
150
65
.
19.
Bücking
TM
,
Hill
ER
,
Robertson
JL
,
Maneas
E
,
Plumb
AA
,
Nikitichev
DI
.
From medical imaging data to 3D printed anatomical models
.
PLoS One
.
2017
;
12
(
5
):
e0178540
.
20.
Carmeliet
P
,
Jain
RK
.
Angiogenesis in cancer and other diseases
.
Nature
.
2000
;
407
(
6801
):
249
57
.
21.
Chansoria
P
,
Shirwaiker
R
.
Characterizing the Process Physics of Ultrasound-Assisted Bioprinting
.
Sci Rep
.
2019
;
9
(
1
):
13889
.
22.
Cheng
RY
,
Eylert
G
,
Gariepy
JM
,
He
S
,
Ahmad
H
,
Gao
Y
,
Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns
.
Biofabrication
.
2020
;
12
(
2
):
025002
.
23.
Connell
JL
,
Ritschdorff
ET
,
Whiteley
M
,
Shear
JB
.
3D printing of microscopic bacterial communities
.
Proc Natl Acad Sci USA
.
2013
;
110
(
46
):
18380
.
24.
Cortes
D
,
McTiernan
CD
,
Ruel
M
,
Franco
W
,
Chu
C
,
Liang
W
,
BEaTS-α an open access 3D printed device for in vitro electromechanical stimulation of human induced pluripotent stem cells
.
Sci Rep
.
2020
;
10
(
1
):
11274
.
25.
Cui
H
,
Zhu
W
,
Huang
Y
,
Liu
C
,
Yu
ZX
,
Nowicki
M
,
In vitro and in vivo evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium
.
Biofabrication
.
2019
;
12
(
1
):
015004
.
26.
Cui
X
,
Boland
T
,
D'Lima
DD
,
Lotz
MK
.
Thermal inkjet printing in tissue engineering and regenerative medicine
.
Recent Pat Drug Deliv Formul
.
2012a
;
6
(
2
):
149
55
.
27.
Cui
X
,
Breitenkamp
K
,
Finn
MG
,
Lotz
M
,
D'Lima
DD
.
Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology
.
Tissue Eng Part A
.
2012b
;
18
(
11‐12
):
1304
12
.
28.
Dangas
GD
,
Weitz
JI
,
Giustino
G
,
Makkar
R
,
Mehran
R
.
Prosthetic Heart Valve Thrombosis
.
J Am Coll Cardiol
.
2016
;
68
(
24
):
2670
89
.
29.
Deo
KA
,
Singh
KA
,
Peak
CW
,
Alge
DL
,
Gaharwar
AK
.
Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds
.
Tissue Eng Part A
.
2020
;
26
(
5‐6
):
318
38
.
30.
Dey
M
,
Ozbolat
IT
.
3D bioprinting of cells, tissues and organs
.
Sci Rep
.
2020
;
10
(
1
):
14023
.
31.
Di Bella
C
,
Duchi
S
,
O'Connell
CD
,
Blanchard
R
,
Augustine
C
,
Yue
Z
,
In situ handheld three-dimensional bioprinting for cartilage regeneration
.
J Tissue Eng Regen Med
.
2018
;
12
(
3
):
611
21
.
32.
Duan
B
,
Hockaday
LA
,
Kang
KH
,
Butcher
JT
.
3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
.
J Biomed Mater Res A
.
2013
;
101
(
5
):
1255
64
.
33.
Duan
B
,
Kapetanovic
E
,
Hockaday
LA
,
Butcher
JT
.
Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
.
Acta Biomater
.
2014
;
10
(
5
):
1836
46
.
34.
Farooqi
KM
,
Cooper
C
,
Chelliah
A
,
Saeed
O
,
Chai
PJ
,
Jambawalikar
SR
,
3D Printing and Heart Failure: The Present and the Future
.
JACC Heart Fail
.
2019
;
7
(
2
):
132
42
.
35.
Feric
NT
,
Radisic
M
.
Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues
.
Adv Drug Deliv Rev
.
2016
;
96
:
110
34
.
36.
Formlabs
.
How 3D Printing is Accelerating Tissue Engineering Research at
the University of Sheffield
.
2019
. https://3d.formlabs.com/white-paper-how-3d-printing-is-accelerating-tissue-engineering-research/
37.
Forte
MNV
,
Hussain
T
,
Roest
A
,
Gomez
G
,
Jongbloed
M
,
Simpson
J
,
Living the heart in three dimensions: applications of 3D printing in CHD
.
Cardiol Young
.
2019
;
29
(
6
):
733
43
.
38.
Gaetani
R
,
Feyen
DA
,
Verhage
V
,
Slaats
R
,
Messina
E
,
Christman
KL
,
Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction
.
Biomaterials
.
2015
;
61
:
339
48
.
39.
Gao
L
,
Kupfer
ME
,
Jung
JP
,
Yang
L
,
Zhang
P
,
Da Sie
Y
,
Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold
.
Circ Res
.
2017
;
120
(
8
):
1318
25
.
40.
Gershlak
JR
,
Hernandez
S
,
Fontana
G
,
Perreault
LR
,
Hansen
KJ
,
Larson
SA
,
Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds
.
Biomaterials
.
2017
;
125
:
13
22
.
41.
Gopalan
N
,
Nor
SNM
,
Mohamed
MS
.
Global Human Embryonic Stem Cell Laws and Policies and Their Influence on Stem Cell Tourism
.
Biotechnol Law Rep
.
2018
;
37
(
5
):
255
69
.
42.
Grigoryan
B
,
Paulsen
SJ
,
Corbett
DC
,
Sazer
DW
,
Fortin
CL
,
Zaita
AJ
,
Multivascular networks and functional intravascular topologies within biocompatible hydrogels
.
Science
.
2019
;
364
(
6439
):
458
.
43.
Gruene
M
,
Pflaum
M
,
Deiwick
A
,
Koch
L
,
Schlie
S
,
Unger
C
,
Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells
.
Biofabrication
.
2011
;
3
(
1
):
015005
.
44.
Guillotin
B
,
Catros
S
,
Guillemot
F
.
Laser Assisted Bio-printing (LAB) of Cells and Bio-materials Based on Laser Induced Forward Transfer (LIFT)
. In:
Schmidt
V
,
Belegratis
MR
, editors.
Laser Technology in Biomimetics: Basics and Applications
.
Berlin, Heidelberg
:
Springer
;
2013
. p.
193
209
.
45.
Guo
Y
,
Pu
WT
.
Cardiomyocyte Maturation: New Phase in Development
.
Circ Res
.
2020
;
126
(
8
):
1086
106
.
46.
Hakimi
N
,
Cheng
R
,
Leng
L
,
Sotoudehfar
M
,
Ba
PQ
,
Bakhtyar
N
,
Handheld skin printer: in situ formation of planar biomaterials and tissues
.
Lab Chip
.
2018
;
18
(
10
):
1440
51
.
47.
He
L
,
Chen
X
.
Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies
.
Adv Healthc Mater
.
2020
;
9
(
22
):
2001175
.
48.
Hinton
TJ
,
Jallerat
Q
,
Palchesko
RN
,
Park
JH
,
Grodzicki
MS
,
Shue
HJ
,
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
.
Sci Adv
.
2015
;
1
(
9
):
e1500758
.
49.
Ho
CM
,
Mishra
A
,
Lin
PT
,
Ng
SH
,
Yeong
WY
,
Kim
YJ
,
3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering
.
Macromol Biosci
.
2017
;
17
(
4
):
1600250
.
50.
Hockaday
LA
,
Kang
KH
,
Colangelo
NW
,
Cheung
PY
,
Duan
B
,
Malone
E
,
Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
.
Biofabrication
.
2012
;
4
(
3
):
035005
.
51.
Hoehne
JL
,
Carlstron
R
,
Dernorwsek
J
,
Cristovam
PC
,
Bachiega
HL
,
Abensur
SI
,
Piezoelectric 3D bioprinting for ophthalmological applications: process development and viability analysis of the technology
.
Biomed Phys Eng Express
.
2020
;
6
(
3
):
035021
.
52.
Hong
H
,
Seo
YB
,
Kim
DY
,
Lee
JS
,
Lee
YJ
,
Lee
H
,
Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering
.
Biomaterials
.
2020
;
232
:
119679
.
53.
Horn
MA
,
Trafford
AW
.
Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling
.
J Mol Cell Cardiol
.
2016
;
93
:
175
85
.
54.
Hosoyama
K
,
Ahumada
M
,
McTiernan
CD
,
Davis
DR
,
Variola
F
,
Ruel
M
,
Nanoengineered Electroconductive Collagen-Based Cardiac Patch for Infarcted Myocardium Repair
.
ACS Appl Mater Interfaces
.
2018
;
10
(
51
):
44668
77
.
55.
Hospodiuk
M
,
Dey
M
,
Sosnoski
D
,
Ozbolat
IT
.
The bioink: A comprehensive review on bioprintable materials
.
Biotechnol Adv
.
2017
;
35
(
2
):
217
39
.
56.
Huang
NF
,
Serpooshan
V
,
Morris
VB
,
Sayed
N
,
Pardon
G
,
Abilez
OJ
,
Big bottlenecks in cardiovascular tissue engineering
.
Commun Biol
.
2018
;
1
(
1
):
199
.
57.
Huang
Y
,
Xia
A
,
Yang
G
,
Jin
F
.
Bioprinting Living Biofilms through Optogenetic Manipulation
.
ACS Synth Biol
.
2018
;
7
(
5
):
1195
200
.
58.
Izadifar
M
,
Chapman
D
,
Babyn
P
,
Chen
X
,
Kelly
ME
.
UV-assisted 3D bioprinting of nano-reinforced hybrid cardiac patch for myocardial tissue engineering
.
Tissue Eng Part C Methods
.
2017
;
24
(
2
):
74
88
.
59.
Jang
J
,
Park
HJ
,
Kim
SW
,
Kim
H
,
Park
JY
,
Na
SJ
,
3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair
.
Biomaterials
.
2017
;
112
:
264
74
.
60.
Jia
W
,
Gungor-Ozkerim
PS
,
Zhang
YS
,
Yue
K
,
Zhu
K
,
Liu
W
,
Direct 3D bioprinting of perfusable vascular constructs using a blend bioink
.
Biomaterials
.
2016
;
106
:
58
68
.
61.
Jourdan-LeSaux
C
,
Zhang
J
,
Lindsey
ML
.
Extracellular matrix roles during cardiac repair
.
Life Sci
.
2010
;
87
(
13‐14
):
391
400
.
62.
Jover
E
,
Fagnano
M
,
Angelini
G
,
Madeddu
P
.
Cell Sources for Tissue Engineering Strategies to Treat Calcific Valve Disease
.
Front Cardiovasc Med
.
2018
;
5
:
155
.
63.
Kengla
C
,
Kidiyoor
A
,
Murphy
SV
.
Chapter 68. Bioprinting Complex 3D Tissue and Organs
. In:
Orlando
G
,
Remuzzi
G
,
Williams
DF
, editors.
Kidney Transplantation, Bioengineering and Regeneration
.
London
:
Academic Press
;
2017
. p.
957
71
.
64.
Keriquel
V
,
Guillemot
F
,
Arnault
I
,
Guillotin
B
,
Miraux
S
,
Amédée
J
,
In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice
.
Biofabrication
.
2010
;
2
(
1
):
014101
.
65.
Kingsley
DM
,
Dias
AD
,
Chrisey
DB
,
Corr
DT
.
Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads
.
Biofabrication
.
2013
;
5
(
4
):
045006
.
66.
Koch
L
,
Gruene
M
,
Unger
C
,
Chichkov
B
.
Laser assisted cell printing
.
Curr Pharm Biotechnol
.
2013
;
14
(
1
):
91
7
.
67.
Kroll
K
,
Chabria
M
,
Wang
K
,
Häusermann
F
,
Schuler
F
,
Polonchuk
L
.
Electro-mechanical conditioning of human iPSC-derived cardiomyocytes for translational research
.
Prog Biophys Mol Biol
.
2017
;
130
:
212
22
.
68.
Laflamme
MA
,
Sebastian
MM
,
Buetow
BS
.
10. Cardiovascular
. In:
Treuting
PM
,
Dintzis
SM
, editors.
Comparative Anatomy and Histology
.
San Diego
:
Academic Press
;
2012
. p.
135
53
.
69.
Lee
A
,
Hudson
AR
,
Shiwarski
DJ
,
Tashman
JW
,
Hinton
TJ
,
Yerneni
S
,
3D bioprinting of collagen to rebuild components of the human heart
.
Science
.
2019
;
365
(
6452
):
482
7
.
70.
Lee
JK
,
Link
JM
,
Hu
JCY
,
Athanasiou
KA
.
The Self-Assembling Process and Applications in Tissue Engineering
.
Cold Spring Harb Perspect Med
.
2017
;
7
(
11
):
a025668
.
71.
Li
X
,
Chen
J
,
Liu
B
,
Wang
X
,
Ren
D
,
Xu
T
.
Inkjet Printing for Biofabrication
. In:
Ovsianikov
A
,
Yoo
J
,
Mironov
V
, editors.
3D Printing and Biofabrication
.
Cham
:
Springer International Publishing
;
2018
. p.
283
301
.
72.
Lu
L
,
Mende
M
,
Yang
X
,
Körber
HF
,
Schnittler
HJ
,
Weinert
S
,
Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion
.
Tissue Eng Part A
.
2013
;
19
(
3‐4
):
403
14
.
73.
Maiullari
F
,
Costantini
M
,
Milan
M
,
Pace
V
,
Chirivì
M
,
Maiullari
S
,
A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes
.
Sci Rep
.
2018
;
8
(
1
):
13532
.
74.
Metra
M
,
Teerlink
JR
.
Heart failure
.
Lancet
.
2017
;
390
(
10106
):
1981
95
.
75.
Miklas
JW
,
Nunes
SS
,
Sofla
A
,
Reis
LA
,
Pahnke
A
,
Xiao
Y
,
Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation
.
Biofabrication
.
2014
;
6
(
2
):
024113
.
76.
Miller
JS
,
Stevens
KR
,
Yang
MT
,
Baker
BM
,
Nguyen
DH
,
Cohen
DM
,
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
.
Nat Mater
.
2012
;
11
(
9
):
768
74
.
77.
Morgan
KY
,
Black
LD
 3rd
.
Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs
.
Tissue Eng Part A
.
2014
;
20
(
11‐12
):
1654
67
.
78.
Müller
P
,
Lemcke
H
,
David
R
.
Stem Cell Therapy in Heart Diseases - Cell Types, Mechanisms and Improvement Strategies
.
Cell Physiol Biochem
.
2018
;
48
(
6
):
2607
55
.
79.
Murphy
SV
,
De Coppi
P
,
Atala
A
.
Opportunities and challenges of translational 3D bioprinting
.
Nat Biomed Eng
.
2020
;
4
(
4
):
370
80
.
80.
Ng
WL
,
Lee
JM
,
Yeong
WY
,
Win Naing
M
.
Microvalve-based bioprinting - process, bio-inks and applications
.
Biomater Sci
.
2017
;
5
(
4
):
632
47
.
81.
Nguyen
AH
,
Marsh
P
,
Schmiess-Heine
L
,
Burke
PJ
,
Lee
A
,
Lee
J
,
Cardiac tissue engineering: state-of-the-art methods and outlook
.
J Biol Eng
.
2019
;
13
(
1
):
57
.
82.
Ong
CS
,
Fukunishi
T
,
Zhang
H
,
Huang
CY
,
Nashed
A
,
Blazeski
A
,
Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes
.
Sci Rep
.
2017
;
7
(
1
):
4566
.
83.
Pati
F
,
Jang
J
,
Ha
DH
,
Won Kim
S
,
Rhie
JW
,
Shim
JH
,
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
.
Nat Commun
.
2014
;
5
(
1
):
3935
.
84.
Prabhu
SD
,
Frangogiannis
NG
.
The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis
.
Circ Res
.
2016
;
119
(
1
):
91
112
.
85.
Pusch
K
,
Hinton
TJ
,
Feinberg
AW
.
Large volume syringe pump extruder for desktop 3D printers
.
HardwareX
.
2018
;
3
:
49
61
.
86.
Putame
G
,
Terzini
M
,
Carbonaro
D
,
Pisani
G
,
Serino
G
,
Di Meglio
F
,
Application of 3D Printing Technology for Design and Manufacturing of Customized Components for a Mechanical Stretching Bioreactor
.
J Healthc Eng
.
2019
;
2019
:
3957931
.
87.
Qian
X
,
Nguyen
HN
,
Song
MM
,
Hadiono
C
,
Ogden
SC
,
Hammack
C
,
Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure
.
Cell
.
2016
;
165
(
5
):
1238
54
.
88.
Raveling
AR
,
Theodossiou
SK
,
Schiele
NR
.
A 3D printed mechanical bioreactor for investigating mechanobiology and soft tissue mechanics
.
MethodsX
.
2018
;
5
:
924
32
.
89.
Ripley
B
,
Kelil
T
,
Cheezum
MK
,
Goncalves
A
,
Di Carli
MF
,
Rybicki
FJ
,
3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement
.
J Cardiovasc Comput Tomogr
.
2016
;
10
(
1
):
28
36
.
90.
Ronaldson-Bouchard
K
,
Ma
SP
,
Yeager
K
,
Chen
T
,
Song
L
,
Sirabella
D
,
Advanced maturation of human cardiac tissue grown from pluripotent stem cells
.
Nature
.
2018
;
556
(
7700
):
239
43
.
91.
Ross
MH
,
Pawlina
W
.
Histology: A Text and Atlas: With Correlated Cell and Molecular Biology
. 6th ed.
Philadelphia
:
Lippincott Williams & Wilkins
;
2006
.
92.
Ruan
JL
,
Tulloch
NL
,
Razumova
MV
,
Saiget
M
,
Muskheli
V
,
Pabon
L
,
Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue
.
Circulation
.
2016
;
134
(
20
):
1557
67
.
93.
Sedlakova
V
,
Ruel
M
,
Suuronen
EJ
.
Therapeutic Use of Bioengineered Materials for Myocardial Infarction
. In:
Alarcon
EI
,
Ahumada
M
, editors.
Nanoengineering Materials for Biomedical Uses
.
Cham
:
Springer International Publishing
;
2019
. p.
161
93
.
94.
Shamhart
PE
,
Meszaros
JG
.
Non-fibrillar collagens: Key mediators of post-infarction cardiac remodeling?
J Mol Cell Cardiol
.
2010
;
48
(
3
):
530
7
.
95.
Shao
L
,
Gao
Q
,
Zhao
H
,
Xie
C
,
Fu
J
,
Liu
Z
,
Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers
.
Small
.
2018
;
14
(
44
):
e1802187
.
96.
Shtein
Z
,
Shoseyov
O
.
When bottom-up meets top-down
.
Proc Natl Acad Sci USA
.
2017
;
114
(
3
):
428
9
.
97.
Singh
S
,
Choudhury
D
,
Yu
F
,
Mironov
V
,
Naing
MW
.
In situ bioprinting - Bioprinting from benchside to bedside?
Acta Biomater
.
2020
;
101
:
14
25
.
98.
Skardal
A
,
Mack
D
,
Kapetanovic
E
,
Atala
A
,
Jackson
JD
,
Yoo
J
,
Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
.
Stem Cells Transl Med
.
2012
;
1
(
11
):
792
802
.
99.
Smith
LJ
,
Li
P
,
Holland
MR
,
Ekser
B
.
FABRICA: A Bioreactor Platform for Printing, Perfusing, Observing, & Stimulating 3D Tissues
.
Sci Rep
.
2018
;
8
(
1
):
7561
.
100.
Squelch
A
.
3D printing and medical imaging
.
J Med Radiat Sci
.
2018
;
65
(
3
):
171
2
.
101.
Steenbergen
C
,
Frangogiannis
NG
.
Chapter 36. Ischemic Heart Disease
. In:
Hill
JA
,
Olson
EN
, editors.
Muscle
.
Boston/Waltham
:
Academic Press
;
2012
. p.
495
521
.
102.
Tandon
N
,
Cannizzaro
C
,
Chao
PH
,
Maidhof
R
,
Marsano
A
,
Au
HT
,
Electrical stimulation systems for cardiac tissue engineering
.
Nat Protoc
.
2009
;
4
(
2
):
155
73
.
103.
Taylor
DA
,
Elgalad
A
,
Sampaio
LC
.
What will it take before a bioengineered heart will be implanted in patients?
Curr Opin Organ Transplant
.
2018
;
23
(
6
):
664
.
104.
Tijore
A
,
Irvine
SA
,
Sarig
U
,
Mhaisalkar
P
,
Baisane
V
,
Venkatraman
S
.
Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel
.
Biofabrication
.
2018
;
10
(
2
):
025003
.
105.
Tuncay
V
,
van Ooijen
PMA
.
3D printing for heart valve disease: a systematic review
.
Eur Radiol Exp
.
2019
;
3
(
1
):
9
.
106.
Urciuolo
A
,
Poli
I
,
Brandolino
L
,
Raffa
P
,
Scattolini
V
,
Laterza
C
,
Intravital three-dimensional bioprinting
.
Nat Biomed Eng
.
2020
;
4
(
9
):
901
915
.
107.
Valverde
I
,
Gomez-Ciriza
G
,
Hussain
T
,
Suarez-Mejias
C
,
Velasco-Forte
MN
,
Byrne
N
,
Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study
.
Eur J Cardiothorac Surg
.
2017
;
52
(
6
):
1139
48
.
108.
Waller
DG
,
Sampson
AP
.
5. Ischaemic heart disease
. In:
Waller
DG
,
Sampson
AP
, editors.
Medical Pharmacology and Therapeutics
. 5th ed.
Elsevier
;
2018
. p.
93
110
.
109.
Wang
Z
,
Lee
SJ
,
Cheng
HJ
,
Yoo
JJ
,
Atala
A
.
3D bioprinted functional and contractile cardiac tissue constructs
.
Acta Biomater
.
2018
;
70
:
48
56
.
110.
Watkins
DA
,
Beaton
AZ
,
Carapetis
JR
,
Karthikeyan
G
,
Mayosi
BM
,
Wyber
R
,
Rheumatic Heart Disease Worldwide: JACC Scientific Expert Panel
.
J Am Coll Cardiol
.
2018
;
72
(
12
):
1397
416
.
111.
World Health Organization
.
Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2016
.
Geneva
:
World Health Organization
;
2018
.
112.
Xia
C
,
Fang
NX
.
3D microfabricated bioreactor with capillaries
.
Biomed Microdevices
.
2009
;
11
(
6
):
1309
15
.
113.
Yeung
E
,
Fukunishi
T
,
Bai
Y
,
Bedja
D
,
Pitaktong
I
,
Mattson
G
,
Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo
.
J Tissue Eng Regen Med
.
2019
;
13
(
11
):
2031
9
.
114.
Zhang
YS
,
Arneri
A
,
Bersini
S
,
Shin
SR
,
Zhu
K
,
Goli-Malekabadi
Z
,
Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
.
Biomaterials
.
2016
;
110
:
45
59
.
115.
Zhu
F
,
Friedrich
T
,
Nugegoda
D
,
Kaslin
J
,
Wlodkowic
D
.
Assessment of the biocompatibility of three-dimensional-printed polymers using multispecies toxicity tests
.
Biomicrofluidics
.
2015
;
9
(
6
):
061103
.
116.
Zhu
K
,
Shin
SR
,
van Kempen
T
,
Li
YC
,
Ponraj
V
,
Nasajpour
A
,
Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs
.
Adv Funct Mater
.
2017
;
27
(
12
):
1605352
.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.