Bioengineering a solid organ for organ replacement is a growing endeavor in regenerative medicine. Our approach – recellularization of a decellularized cadaveric organ scaffold with human cells – is currently the most promising approach to building a complex solid vascularized organ to be utilized in vivo, which remains the major unmet need and a key challenge. The 2008 publication of perfusion-based decellularization and partial recellularization of a rat heart revolutionized the tissue engineering field by showing that it was feasible to rebuild an organ using a decellularized extracellular matrix scaffold. Toward the goal of clinical translation of bioengineered tissues and organs, there is increasing recognition of the underlying need to better integrate basic science domains and industry. From the perspective of a research group focusing on whole heart engineering, we discuss the current approaches and advances in whole organ engineering research as they relate to this multidisciplinary field’s 3 major pillars: organ scaffolds, large numbers of cells, and biomimetic bioreactor systems. The success of whole organ engineering will require optimization of protocols to produce biologically-active scaffolds for multiple organ systems, and further technological innovation both to produce the massive quantities of high-quality cells needed for recellularization and to engineer a bioreactor with physiologic stimuli to recapitulate organ function. Also discussed are the challenges to building an implantable vascularized solid organ.

1.
Adams
F
,
Qiu
T
,
Mark
A
,
Fritz
B
,
Kramer
L
,
Schlager
D
,
Soft 3D-Printed Phantom of the Human Kidney with Collecting System
.
Ann Biomed Eng
.
2017 Apr
;
45
(
4
):
963
72
.
2.
Akhyari
P
,
Aubin
H
,
Gwanmesia
P
,
Barth
M
,
Hoffmann
S
,
Huelsmann
J
,
The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities
.
Tissue Eng Part C Methods
.
2011 Sep
;
17
(
9
):
915
26
.
3.
Baiguera
S
,
Ribatti
D
.
Endothelialization approaches for viable engineered tissues
.
Angiogenesis
.
2013 Jan
;
16
(
1
):
1
14
.
4.
Bianconi
E
,
Piovesan
A
,
Facchin
F
,
Beraudi
A
,
Casadei
R
,
Frabetti
F
,
An estimation of the number of cells in the human body
.
Ann Hum Biol
.
2013 Nov-Dec
;
40
(
6
):
463
71
.
5.
Bruyneel
AAN
,
Carr
CA
.
Ambiguity in the Presentation of Decellularized Tissue Composition: The Need for Standardized Approaches
.
Artif Organs
.
2017 Aug
;
41
(
8
):
778
84
.
6.
Burk
J
,
Erbe
I
,
Berner
D
,
Kacza
J
,
Kasper
C
,
Pfeiffer
B
,
Freeze-thaw cycles enhance decellularization of large tendons
.
Tissue Eng Part C Methods
.
2014 Apr
;
20
(
4
):
276
84
.
7.
Callaghan
NI
,
Hadipour-Lakmehsari
S
,
Lee
SH
,
Gramolini
AO
,
Simmons
CA
.
Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro
.
APL Bioeng
.
2019 Mar
;
3
(
1
):
011501
.
8.
Chong
JJ
,
Yang
X
,
Don
CW
,
Minami
E
,
Liu
YW
,
Weyers
JJ
,
Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts
.
Nature
.
2014 Jun 12
;
510
(
7504
):
273
7
.
9.
Converse
GL
,
Buse
EE
,
Neill
KR
,
McFall
CR
,
Lewis
HN
,
VeDepo
MC
,
Design and efficacy of a single-use bioreactor for heart valve tissue engineering
.
J Biomed Mater Res Part B Appl Biomater
.
2017 Feb
;
105
(
2
):
249
59
.
10.
DiStefano
T
,
Chen
HY
,
Panebianco
C
,
Kaya
KD
,
Brooks
MJ
,
Gieser
L
,
Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors
.
Stem Cell Reports
.
2018 Jan 9
;
10
(
1
):
300
13
.
11.
Dzobo
K
,
Motaung
K
,
Adesida
A
.
Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review
.
Int J Mol Sci
.
2019 Sep 18
;
20
(
18
):
4628
.
12.
Fitzsimmons
REB
,
Mazurek
MS
,
Soos
A
,
Simmons
CA
.
Mesenchymal Stromal/Stem Cells in Regenerative Medicine and Tissue Engineering
.
Stem Cells Int
.
2018
;
2018
:
8031718
.
13.
Gao
Y
,
Liu
S
,
Huang
J
,
Guo
W
,
Chen
J
,
Zhang
L
,
The ECM-cell interaction of cartilage extracellular matrix on chondrocytes
.
Biomed Res Int
.
2014
;
2014
:
648459
.
14.
Govoni
M
,
Muscari
C
,
Guarnieri
C
,
Giordano
E
.
Mechanostimulation protocols for cardiac tissue engineering
.
Biomed Res Int
.
2013
;
2013
:
918640
.
15.
Guo
Y
,
Pu
WT
.
Cardiomyocyte Maturation: New Phase in Development
.
Circ Res
.
2020 Apr 10
;
126
(
8
):
1086
106
.
16.
Guyette
JP
,
Charest
JM
,
Mills
RW
,
Jank
BJ
,
Moser
PT
,
Gilpin
SE
,
Bioengineering Human Myocardium on Native Extracellular Matrix
.
Circ Res
.
2016 Jan 8
;
118
(
1
):
56
72
.
17.
Hagenmuller
H
,
Hitz
M
,
Merkle
HP
,
Meinel
L
,
Muller
R
.
Design and validation of a novel bioreactor principle to combine online micro-computed tomography monitoring and mechanical loading in bone tissue engineering
.
Rev Sci Instrum
.
2010 Jan
;
81
(
1
):
014303
. .
18.
Hansmann
J
,
Groeber
F
,
Kahlig
A
,
Kleinhans
C
,
Walles
H
.
Bioreactors in tissue engineering - principles, applications and commercial constraints
.
Biotechnol J
.
2013 Mar
;
8
(
3
):
298
307
.
19.
He
M
,
Callanan
A
.
Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs
.
Tissue Eng Part B Rev
.
2013 Jun
;
19
(
3
):
194
208
.
20.
Hillebrandt
KH
,
Everwien
H
,
Haep
N
,
Keshi
E
,
Pratschke
J
,
Sauer
IM
.
Strategies based on organ decellularization and recellularization
.
Transpl Int
.
2019 Jun
;
32
(
6
):
571
85
.
21.
Hsieh
PC
,
Davis
ME
,
Lisowski
LK
,
Lee
RT
.
Endothelial-cardiomyocyte interactions in cardiac development and repair
.
Annu Rev Physiol
.
2006
;
68
:
51
66
.
22.
Huang
NF
,
Serpooshan
V
,
Morris
VB
,
Sayed
N
,
Pardon
G
,
Abilez
OJ
,
Big bottlenecks in cardiovascular tissue engineering
.
Commun Biol
.
2018
;
1
:
199
.
23.
Hulsmann
J
,
Aubin
H
,
Kranz
A
,
Godehardt
E
,
Munakata
H
,
Kamiya
H
,
A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation
.
J Artif Organs
.
2013 Sep
;
16
(
3
):
294
304
. .
24.
Hulsmann
J
,
Aubin
H
,
Sugimura
Y
,
Lichtenberg
A
,
Akhyari
P
.
Electrophysiological Stimulation of Whole Heart Constructs in an 8-Pole Electrical Field
.
Artif Organs
.
2018 Dec
;
42
(
12
):
E391
E405
. .
[PubMed]
.
25.
Hulsmann
J
,
Aubin
H
,
Wehrmann
A
,
Lichtenberg
A
,
Akhyari
P
.
The impact of left ventricular stretching in model cultivations with neonatal cardiomyocytes in a whole-heart bioreactor
.
Biotechnol Bioeng
.
2017 May
;
114
(
5
):
1107
17
. .
26.
Iop
L
,
Dal Sasso
E
,
Menabò
R
,
Di Lisa
F
,
Gerosa
G
.
The Rapidly Evolving Concept of Whole Heart Engineering
.
Stem Cells Int
.
2017
;
2017
:
8920940
.
27.
Jia
W
,
Gungor-Ozkerim
PS
,
Zhang
YS
,
Yue
K
,
Zhu
K
,
Liu
W
,
Direct 3D bioprinting of perfusable vascular constructs using a blend bioink
.
Biomaterials
.
2016 Nov
;
106
:
58
68
.
28.
Kamakura
T
,
Makiyama
T
,
Sasaki
K
,
Yoshida
Y
,
Wuriyanghai
Y
,
Chen
J
,
Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture
.
Circ J
.
2013
;
77
(
5
):
1307
14
.
29.
Kaushik
G
,
Leijten
J
,
Khademhosseini
A
.
Concise Review: Organ Engineering: Design, Technology, and Integration
.
Stem Cells
.
2017 Jan
;
35
(
1
):
51
60
.
30.
Kensah
G
,
Gruh
I
,
Viering
J
,
Schumann
H
,
Dahlmann
J
,
Meyer
H
,
A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation
.
Tissue Eng Part C Methods
.
2011 Apr
;
17
(
4
):
463
73
.
31.
Laronda
MM
,
Rutz
AL
,
Xiao
S
,
Whelan
KA
,
Duncan
FE
,
Roth
EW
,
A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice
.
Nat Commun
.
2017 May 16
;
8
:
15261
.
32.
Lee
B
,
Borys
BS
,
Kallos
MS
,
Rodrigues
CAV
,
Silva
TP
,
Cabral
JMS
.
Challenges and Solutions for Commercial Scale Manufacturing of Allogeneic Pluripotent Stem Cell Products
.
Bioengineering (Basel)
.
2020 Mar 28
;
7
(
2
):31.
33.
Liu
L
,
Gardecki
JA
,
Nadkarni
SK
,
Toussaint
JD
,
Yagi
Y
,
Bouma
BE
,
Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography
.
Nat Med
.
2011 Jul 10
;
17
(
8
):
1010
4
.
34.
Lundy
SD
,
Zhu
WZ
,
Regnier
M
,
Laflamme
MA
.
Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells
.
Stem Cells Dev
.
2013 Jul 15
;
22
(
14
):
1991
2002
.
35.
MacQueen
LA
,
Sheehy
SP
,
Chantre
CO
,
Zimmerman
JF
,
Pasqualini
FS
,
Liu
X
,
A tissue-engineered scale model of the heart ventricle
.
Nat Biomed Eng
.
2018 Dec
;
2
(
12
):
930
41
.
36.
Mahara
A
,
Sago
M
,
Yamaguchi
H
,
Ehashi
T
,
Minatoya
K
,
Tanaka
H
,
Micro-CT evaluation of high pressure-decellularized cardiovascular tissues transplanted in rat subcutaneous accelerated-calcification model
.
J Artif Organs
.
2015 Jun
;
18
(
2
):
143
50
.
37.
Maidhof
R
,
Tandon
N
,
Lee
EJ
,
Luo
J
,
Duan
Y
,
Yeager
K
,
Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue
.
J Tissue Eng Regen Med
.
2012 Nov
;
6
(
10
):
e12
23
.
38.
Mandrycky
C
,
Phong
K
,
Zheng
Y
.
Tissue engineering toward organ-specific regeneration and disease modeling
.
MRS Commun
.
2017 Sep
;
7
(
3
):
332
47
.
39.
Mao
AS
,
Mooney
DJ
.
Regenerative medicine: Current therapies and future directions
.
Proc Natl Acad Sci USA
.
2015 Nov 24
;
112
(
47
):
14452
9
.
40.
Masuda
S
,
Matsuura
K
,
Anazawa
M
,
Iwamiya
T
,
Shimizu
T
,
Okano
T
.
Formation of vascular network structures within cardiac cell sheets from mouse embryonic stem cells
.
Regen Ther
.
2015 Dec
;
2
:
6
16
.
41.
Mazza
G
,
Al-Akkad
W
,
Rombouts
K
,
Pinzani
M
.
Liver tissue engineering: From implantable tissue to whole organ engineering
.
Hepatol Commun
.
2018 Feb
;
2
(
2
):
131
41
.
42.
Min
S
,
Ko
IK
,
Yoo
JJ
.
State-of-the-Art Strategies for the Vascularization of Three-Dimensional Engineered Organs
.
Vasc Specialist Int
.
2019 Jun
;
35
(
2
):
77
89
.
43.
Mohamed
MA
,
Islas
JF
,
Schwartz
RJ
,
Birla
RK
.
Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications
.
ASAIO J
.
2017 May/Jun
;
63
(
3
):
333
41
.
44.
Moreno
A
,
Walton
RD
,
Constantin
M
,
Bernus
O
,
Vigmond
EJ
,
Bayer
JD
.
Wide-area low-energy surface stimulation of large mammalian ventricular tissue
.
Sci Rep
.
2019 Nov 1
;
9
(
1
):
15863
.
45.
Morrissette-McAlmon
J
,
Ginn
B
,
Somers
S
,
Fukunishi
T
,
Thanitcul
C
,
Rindone
A
,
Biomimetic Model of Contractile Cardiac Tissue with Endothelial Networks Stabilized by Adipose-Derived Stromal/Stem Cells
.
Sci Rep
.
2020 May 20
;
10
(
1
):
8387
.
46.
Narmoneva
DA
,
Vukmirovic
R
,
Davis
ME
,
Kamm
RD
,
Lee
RT
.
Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration
.
Circulation
.
2004 Aug 24
;
110
(
8
):
962
8
.
47.
Nguyen
DT
,
O'Hara
M
,
Graneli
C
,
Hicks
R
,
Miliotis
T
,
Nyström
AC
,
Humanizing Miniature Hearts through 4-Flow Cannulation Perfusion Decellularization and Recellularization
.
Sci Rep
.
2018 May 10
;
8
(
1
):
7458
.
48.
Nichol
JW
,
Khademhosseini
A
.
Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up
.
Soft Matter
.
2009
;
5
(
7
):
1312
9
.
49.
Nichols
JE
,
La Francesca
S
,
Vega
SP
,
Niles
JA
,
Argueta
LB
,
Riddle
M
,
Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs
.
J Tissue Eng Regen Med
.
2017 Jul
;
11
(
7
):
2136
52
.
50.
Noor
N
,
Shapira
A
,
Edri
R
,
Gal
I
,
Wertheim
L
,
Dvir
T
.
3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts
.
Adv Sci (Weinh)
.
2019 Jun 5
;
6
(
11
):
1900344
.
51.
Ott
HC
,
Matthiesen
TS
,
Goh
SK
,
Black
LD
,
Kren
SM
,
Netoff
TI
,
Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart
.
Nat Med
.
2008 Feb
;
14
(
2
):
213
21
.
52.
Paccola Mesquita
FC
,
Hochman-Mendez
C
,
Morrissey
J
,
Sampaio
LC
,
Taylor
DA
.
Laminin as a Potent Substrate for Large-Scale Expansion of Human Induced Pluripotent Stem Cells in a Closed Cell Expansion System
.
Stem Cells Int
.
2019
;
2019
:
9704945
.
53.
Pellegata
AF
,
Tedeschi
AM
,
De Coppi
P
.
Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits
.
Front Bioeng Biotechnol
.
2018 May 14
;
6
:
56
.
54.
Peloso
A
,
Dhal
A
,
Zambon
JP
,
Li
P
,
Orlando
G
,
Atala
A
,
Current achievements and future perspectives in whole-organ bioengineering
.
Stem Cell Res Ther
.
2015 Jun 1
;
6
:
107
.
55.
Peroglio
M
,
Gaspar
D
,
Zeugolis
DI
,
Alini
M
.
Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans
.
J Orthop Res
.
2018 Jan
;
36
(
1
):
10
21
.
56.
Pinto
AR
,
Ilinykh
A
,
Ivey
MJ
,
Kuwabara
JT
,
D'Antoni
ML
,
Debuque
R
,
Revisiting Cardiac Cellular Composition
.
Circ Res
.
2016 Feb 5
;
118
(
3
):
400
9
.
57.
Portner
R
,
Nagel-Heyer
S
,
Goepfert
C
,
Adamietz
P
,
Meenen
NM
.
Bioreactor design for tissue engineering
.
J Biosci Bioeng
.
2005 Sep
;
100
(
3
):
235
45
.
58.
Ramm
R
,
Goecke
T
,
Theodoridis
K
,
Hoeffler
K
,
Sarikouch
S
,
Findeisen
K
,
Decellularization combined with enzymatic removal of N-linked glycans and residual DNA reduces inflammatory response and improves performance of porcine xenogeneic pulmonary heart valves in an ovine in vivo model
.
Xenotransplantation
.
2020 Mar
;
27
(
2
):
e12571
.
59.
Riehl
BD
,
Park
JH
,
Kwon
IK
,
Lim
JY
.
Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs
.
Tissue Eng Part B Rev
.
2012 Aug
;
18
(
4
):
288
300
.
60.
Robertson
MJ
,
Dries-Devlin
JL
,
Kren
SM
,
Burchfield
JS
,
Taylor
DA
.
Optimizing recellularization of whole decellularized heart extracellular matrix
.
PLoS One
.
2014
;
9
(
2
):
e90406
.
61.
Ronaldson-Bouchard
K
,
Ma
SP
,
Yeager
K
,
Chen
T
,
Song
L
,
Sirabella
D
,
Advanced maturation of human cardiac tissue grown from pluripotent stem cells
.
Nature
.
2018 Apr
;
556
(
7700
):
239
43
.
62.
Ronaldson-Bouchard
K
,
Yeager
K
,
Teles
D
,
Chen
T
,
Ma
S
,
Song
L
,
Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype
.
Nat Protoc
.
2019 Oct
;
14
(
10
):
2781
817
.
63.
Scarritt
ME
,
Pashos
NC
,
Bunnell
BA
.
A review of cellularization strategies for tissue engineering of whole organs
.
Front Bioeng Biotechnol
.
2015
;
3
:
43
.
64.
Schmidt
JB
,
Tranquillo
RT
.
Cyclic Stretch and Perfusion Bioreactor for Conditioning Large Diameter Engineered Tissue Tubes
.
Ann Biomed Eng
.
2016 May
;
44
(
5
):
1785
97
.
65.
Sears
V
,
Ghosh
G
.
Harnessing mesenchymal stem cell secretome: Effect of extracellular matrices on proangiogenic signaling
.
Biotechnol Bioeng
.
2020 Apr
;
117
(
4
):
1159
71
.
66.
Sekine
H
,
Shimizu
T
,
Hobo
K
,
Sekiya
S
,
Yang
J
,
Yamato
M
,
Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts
.
Circulation
.
2008 Sep 30
;
118
(
14 Suppl
):
S145
52
.
67.
Sesli
M
,
Akbay
E
,
Onur
MA
.
Decellularization of rat adipose tissue, diaphragm, and heart: a comparison of two decellularization methods
.
Turk J Biol
.
2018
;
42
(
6
):
537
47
.
68.
Simsa
R
,
Padma
AM
,
Heher
P
,
Hellström
M
,
Teuschl
A
,
Jenndahl
L
,
Systematic in vitro comparison of decellularization protocols for blood vessels
.
PLoS One
.
2018
;
13
(
12
):
e0209269
.
69.
Stephenson
M
,
Grayson
W
.
Recent advances in bioreactors for cell-based therapies
.
F1000Res
.
2018 April 30
;
7
.
70.
Stoppel
WL
,
Kaplan
DL
,
Black
LD
 3rd
.
Electrical and mechanical stimulation of cardiac cells and tissue constructs
.
Adv Drug Deliv Rev
.
2016 Jan 15
;
96
:
135
55
.
71.
Szulc
DA
,
Ahmadipour
M
,
Aoki
FG
,
Waddell
TK
,
Karoubi
G
,
Cheng
HM
.
MRI method for labeling and imaging decellularized extracellular matrix scaffolds for tissue engineering
.
Magn Reson Med
.
2020 Jun
;
83
(
6
):
2138
49
.
72.
Takahashi
K
,
Tanabe
K
,
Ohnuki
M
,
Narita
M
,
Ichisaka
T
,
Tomoda
K
,
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
.
Cell
.
2007 Nov 30
;
131
(
5
):
861
72
.
73.
Takeishi
K
,
Collin de l'Hortet
A
,
Wang
Y
,
Handa
K
,
Guzman-Lepe
J
,
Matsubara
K
,
Assembly and Function of a Bioengineered Human Liver for Transplantation Generated Solely from Induced Pluripotent Stem Cells
.
Cell Rep
.
2020 Jun 2
;
31
(
9
):
107711
.
74.
Talman
V
,
Kivelä
R
.
Cardiomyocyte-Endothelial Cell Interactions in Cardiac Remodeling and Regeneration
.
Front Cardiovasc Med
.
2018 July 26
;
5
:
101
.
75.
Tandon
N
,
Marsano
A
,
Maidhof
R
,
Wan
L
,
Park
H
,
Vunjak-Novakovic
G
.
Optimization of electrical stimulation parameters for cardiac tissue engineering
.
J Tissue Eng Regen Med
.
2011 Jun
;
5
(
6
):
e115
25
.
76.
Taniguchi
D
,
Matsumoto
K
,
Tsuchiya
T
,
Machino
R
,
Takeoka
Y
,
Elgalad
A
,
Scaffold-free trachea regeneration by tissue engineering with bio-3D printing
.
Interact Cardiovasc Thorac Surg
.
2018 May 1
;
26
(
5
):
745
52
.
77.
Taylor
DA
,
Parikh
RB
,
Sampaio
LC
.
Bioengineering Hearts: Simple yet Complex
.
Curr Stem Cell Rep
.
2017
;
3
(
1
):
35
44
.
78.
Taylor
DA
,
Sampaio
LC
,
Cabello
R
,
Elgalad
A
,
Parikh
R
,
Wood
RP
,
Decellularization of Whole Human Heart Inside a Pressurized Pouch in an Inverted Orientation
.
J Vis Exp
.
2018 Nov 26
;(
141
). .
79.
Tiburcy
M
,
Hudson
JE
,
Balfanz
P
,
Schlick
S
,
Meyer
T
,
Chang Liao
ML
,
Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair
.
Circulation
.
2017 May 9
;
135
(
19
):
1832
47
.
80.
Uzarski
JS
,
Bijonowski
BM
,
Wang
B
,
Ward
HH
,
Wandinger-Ness
A
,
Miller
WM
,
Dual-Purpose Bioreactors to Monitor Noninvasive Physical and Biochemical Markers of Kidney and Liver Scaffold Recellularization
.
Tissue Eng Part C Methods
.
2015 Oct
;
21
(
10
):
1032
43
.
81.
Valls-Margarit
M
,
Iglesias-García
O
,
Di Guglielmo
C
,
Sarlabous
L
,
Tadevosyan
K
,
Paoli
R
,
Engineered Macroscale Cardiac Constructs Elicit Human Myocardial Tissue-like Functionality
.
Stem Cell Reports
.
2019 Jul 9
;
13
(
1
):
207
20
.
82.
Visone
R
,
Talò
G
,
Lopa
S
,
Rasponi
M
,
Moretti
M
.
Enhancing all-in-one bioreactors by combining interstitial perfusion, electrical stimulation, on-line monitoring and testing within a single chamber for cardiac constructs
.
Sci Rep
.
2018 Nov 16
;
8
(
1
):
16944
.
83.
Vunjak Novakovic
G
,
Eschenhagen
T
,
Mummery
C
.
Myocardial tissue engineering: in vitro models
.
Cold Spring Harb Perspect Med
.
2014 Mar 1
;
4
(
3
):
a014076
.
84.
Wainright
JL
,
Wholley
CL
,
Cherikh
WS
,
Musick
JM
,
Klassen
DK
.
OPTN Vascularized Composite Allograft Waiting List: Current Status and Trends in the United States
.
Transplantation
.
2018 Nov
;
102
(
11
):
1885
90
.
85.
Wang
B
,
Wang
G
,
To
F
,
Butler
JR
,
Claude
A
,
McLaughlin
RM
,
Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations
.
Langmuir
.
2013 Sep 3
;
29
(
35
):
11109
17
.
86.
Weinberger
F
,
Breckwoldt
K
,
Pecha
S
,
Kelly
A
,
Geertz
B
,
Starbatty
J
,
Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells
.
Sci Transl Med
.
2016 Nov 2
;
8
(
363
):
363ra148
.
87.
Welman
T
,
Michel
S
,
Segaren
N
,
Shanmugarajah
K
.
Bioengineering for Organ Transplantation: Progress and Challenges
.
Bioengineered
.
2015
;
6
(
5
):
257
61
.
88.
Zamani
M
,
Karaca
E
,
Huang
NF
.
Multicellular Interactions in 3D Engineered Myocardial Tissue
.
Front Cardiovasc Med
.
2018
;
5
:
147
.
89.
Zhang
L
,
Zhao
YH
,
Guan
Z
,
Ye
JS
,
de Isla
N
,
Stoltz
JF
.
Application potential of mesenchymal stem cells derived from Wharton's jelly in liver tissue engineering
.
Biomed Mater Eng
.
2015
;
25
(
1 Suppl
):
137
43
.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.