Periodontitis is an inflammatory disease resulting from subgingival microorganisms. Human periodontal ligament stem cells (hPDLSCs) can be applied in periodontal tissue regeneration. This study investigated the effect of hPDLSC-derived extracellular vesicles (EVs) on periodontitis. hPDLSC-derived EVs were isolated and identified. The murine model of periodontitis was established by ligation, and the cell model of periodontitis was established by treatment of macrophages with lipopolysaccharide (LPS). The effects of EVs on macrophage pyroptosis and periodontal inflammatory injury were measured by the means of HE staining, detection of LDH content, CCK-8 assay, Calcein-AM/PI staining, ELISA, Western blot, as well as measurement of caspase-1, SOD, and MDA. miR-590-3p expression was detected using RT-qPCR. miR-590-3p expression was then intervened to validate the effect of miR-590-3p on macrophage pyroptosis. The binding relationship between miR-590-3p and TLR4 was verified using dual-luciferase assay. Functional rescue experiment was performed to validate the role of TLR4 in macrophage pyroptosis. The results showed that inflammatory levels and macrophage pyroptosis were enhanced in the in vivo and in vitro models of periodontitis, evidenced by the increased NLRP3, GSDMD-N, caspase-1, IL-1β, IL-18, TNF-α, and MDA and decreased IL-10 and SOD. EVs alleviated periodontal inflammatory injury and macrophage pyroptosis. Physiologically, EVs carried miR-590-3p into macrophages to upregulate miR-590-3p expression and thereby suppress TLR4 transcription. miR-590-3p silencing or TLR4 overexpression reduced the inhibitory effect of EVs on macrophage pyroptosis. Collectively, EVs carried miR-590-3p into macrophages to subsequently inhibit TLR4 transcription, thereby reducing macrophage pyroptosis and alleviating periodontal inflammatory injury.

1.
Almubarak
A
,
Tanagala
KKK
,
Papapanou
PN
,
Lalla
E
,
Momen-Heravi
F
.
Disruption of Monocyte and Macrophage Homeostasis in Periodontitis
.
Front Immunol
.
2020
;
11
:
330
. .
2.
Annibaldi
A
,
Meier
P
.
Checkpoints in TNF-Induced Cell Death: Implications in Inflammation and Cancer
.
Trends Mol Med
.
2018
;
24
(
1
):
49
65
. .
3.
Bai
X
,
Li
J
,
Li
L
,
Liu
M
,
Liu
Y
,
Cao
M
,
Extracellular Vesicles From Adipose Tissue-Derived Stem Cells Affect Notch-miR148a-3p Axis to Regulate Polarization of Macrophages and Alleviate Sepsis in Mice
.
Front Immunol
.
2020
;
11
:
1391
. .
4.
Bergsbaken
T
,
Fink
SL
,
Cookson
BT
.
Pyroptosis: host cell death and inflammation
.
Nat Rev Microbiol
.
2009
;
7
(
2
):
99
109
. .
5.
Cebatariuniene
A
,
Kriauciunaite
K
,
Prunskaite
J
,
Tunaitis
V
,
Pivoriunas
A
.
Extracellular Vesicles Suppress Basal and Lipopolysaccharide-Induced NFkappaB Activity in Human Periodontal Ligament Stem Cells
.
Stem Cells Dev
.
2019
;
28
(
15
):
1037
49
.
6.
Chiricosta
L
,
Silvestro
S
,
Gugliandolo
A
,
Marconi
GD
,
Pizzicannella
J
,
Bramanti
P
,
Extracellular Vesicles of Human Periodontal Ligament Stem Cells Contain MicroRNAs Associated to Proto-Oncogenes: Implications in Cytokinesis
.
Front Genet
.
2020
;
11
:
582
. .
7.
Deng
F
,
Yan
J
,
Lu
J
,
Luo
M
,
Xia
P
,
Liu
S
,
M2 Macrophage-Derived Exosomal miR-590-3p Attenuates DSS-Induced Mucosal Damage and Promotes Epithelial Repair via the LATS1/YAP/ β-Catenin Signalling Axis
.
J Crohns Colitis
.
2021
;
15
(
4
):
665
77
. .
8.
El-Sisi
AEE
,
Sokar
SS
,
Shebl
AM
,
Mohamed
DZ
,
Abu-Risha
SE
.
Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury
.
Toxicol Appl Pharmacol
.
2021
;
410
:
115340
. .
9.
Gu
C
,
Draga
D
,
Zhou
C
,
Su
T
,
Zou
C
,
Gu
Q
,
miR-590-3p Inhibits Pyroptosis in Diabetic Retinopathy by Targeting NLRP1 and Inactivating the NOX4 Signaling Pathway
.
Invest Ophthalmol Vis Sci
.
2019
;
60
(
13
):
4215
23
. .
10.
Hajishengallis
G
.
Periodontitis: from microbial immune subversion to systemic inflammation
.
Nat Rev Immunol
.
2015
;
15
(
1
):
30
44
. .
11.
He
X
,
Fan
X
,
Bai
B
,
Lu
N
,
Zhang
S
,
Zhang
L
.
Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis
.
Pharmacol Res
.
2021
;
165
:
105447
. .
12.
Hu
R
,
Lin
H
,
Wang
M
,
Zhao
Y
,
Liu
H
,
Min
Y
,
Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers
.
J Animal Sci Biotechnol
.
2021
;
12
(
1
):
25
. .
13.
Jiang
C
,
Yang
W
,
Wang
C
,
Qin
W
,
Ming
J
,
Zhang
M
,
Methylene Blue-Mediated Photodynamic Therapy Induces Macrophage Apoptosis via ROS and Reduces Bone Resorption in Periodontitis
.
Oxid Med Cell Longev
.
2019
;
2019
:
1529520
. .2019
14.
Jin
SH
,
Guan
XY
,
Liang
WH
,
Bai
GH
,
Liu
JG
.
TLR4 polymorphism and periodontitis susceptibility: A meta-analysis
.
Medicine (Baltimore)
.
2016
;
95
(
36
):
e4845
. .
15.
Kang
H
,
Lee
MJ
,
Park
SJ
,
Lee
MS
.
Lipopolysaccharide-Preconditioned Periodontal Ligament Stem Cells Induce M1 Polarization of Macrophages through Extracellular Vesicles
.
Int J Mol Sci
.
2018a
;
19
(
12
). .
16.
Kang
R
,
Zeng
L
,
Zhu
S
,
Xie
Y
,
Liu
J
,
Wen
Q
,
Lipid Peroxidation Drives Gasdermin D-Mediated Pyroptosis in Lethal Polymicrobial Sepsis
.
Cell Host Microbe
.
2018b
;
24
(
1
):
97
e4
. .
17.
Li
W
,
Cao
X
,
He
L
,
Meng
H
,
Yang
B
,
Liao
Y
.
TLR4 polymorphisms may increase susceptibility to periodontitis in Pg-positive individuals
.
PeerJ
.
2019
;
7
:
e7828
. .
18.
Liu
JJ
,
Li
Y
,
Yang
MS
,
Chen
R
,
Cen
CQ
.
SP1-induced ZFAS1 aggravates sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated autophagy and pyroptosis
.
Arch Biochem Biophys
.
2020a
;
695
:
108611
. .
19.
Liu
L
,
Liu
F
,
Sun
Z
,
Peng
Z
,
You
T
,
Yu
Z
.
LncRNA NEAT1 promotes apoptosis and inflammation in LPS-induced sepsis models by targeting miR-590-3p
.
Exp Ther Med
.
2020b
;
20
(
4
):
3290
300
. .
20.
Liu
Z
,
He
Y
,
Xu
C
,
Li
J
,
Zeng
S
,
Yang
X
,
The role of PHF8 and TLR4 in osteogenic differentiation of periodontal ligament cells in inflammatory environment
.
J Periodontol
.
2020c
;
92
(
7
):
1049
59
. .
21.
Liu
T
,
Hu
W
,
Zou
X
,
Xu
J
,
He
S
,
Chang
L
,
Human Periodontal Ligament Stem Cell-Derived Exosomes Promote Bone Regeneration by Altering MicroRNA Profiles
.
Stem Cells Int
.
2020d
;
2020
:
8852307
. .
22.
Livak
KJ
,
Schmittgen
TD
.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
.
Methods
.
2001
;
25
(
4
):
402
8
. .
23.
Luan
X
,
Zhou
X
,
Naqvi
A
,
Francis
M
,
Foyle
D
,
Nares
S
,
MicroRNAs and immunity in periodontal health and disease
.
Int J Oral Sci
.
2018
;
10
(
3
):
24
. .
24.
Mao
Q
,
Liang
XL
,
Zhang
CL
,
Pang
YH
,
Lu
YX
.
LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis
.
Stem Cell Res Ther
.
2019
;
10
(
1
):
393
. .
25.
Nakao
Y
,
Fukuda
T
,
Zhang
Q
,
Sanui
T
,
Shinjo
T
,
Kou
X
,
Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss
.
Acta Biomater
.
2021
;
122
:
306
24
. .
26.
Olsen
I
,
Singhrao
SK
,
Osmundsen
H
.
Periodontitis, pathogenesis and progression: miRNA-mediated cellular responses to Porphyromonas gingivalis
.
J Oral Microbiol
.
2017
;
9
(
1
):
1333396
. .
27.
Qi
W
,
Yang
X
,
Ye
N
,
Li
S
,
Han
Q
,
Huang
J
,
TLR4 gene in the regulation of periodontitis and its molecular mechanism
.
Exp Ther Med
.
2019
;
18
(
3
):
1961
6
. .
28.
Regmi
S
,
Pathak
S
,
Kim
JO
,
Yong
CS
,
Jeong
JH
.
Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives
.
Eur J Cell Biol
.
2019
;
98
(
5‐8
):
151041
. .
29.
Robbins
PD
,
Morelli
AE
.
Regulation of immune responses by extracellular vesicles
.
Nat Rev Immunol
.
2014
;
14
(
3
):
195
208
. .
30.
Robinson
N
,
Ganesan
R
,
Hegedűs
C
,
Kovács
K
,
Kufer
TA
,
Virág
L
.
Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos
.
Redox Biol
.
2019
;
26
:
101239
. .
31.
Sima
C
,
Viniegra
A
,
Glogauer
M
.
Macrophage immunomodulation in chronic osteolytic diseases-the case of periodontitis
.
J Leukoc Biol
.
2019
;
105
(
3
):
473
87
. .
32.
Sun
L
,
Ma
W
,
Gao
W
,
Xing
Y
,
Chen
L
,
Xia
Z
,
Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome
.
Cell Death Dis
.
2019
;
10
(
8
):
542
. .
33.
Tavakoli Dargani
Z
,
Singla
DK
.
Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis
.
Am J Physiol Heart Circ Physiol
.
2019
;
317
(
2
):
H460
H71
. .
34.
Tomofuji
T
,
Yoneda
T
,
Machida
T
,
Ekuni
D
,
Azuma
T
,
Kataoka
K
,
MicroRNAs as serum biomarkers for periodontitis
.
J Clin Periodontol
.
2016
;
43
(
5
):
418
25
. .
35.
Tomokiyo
A
,
Wada
N
,
Maeda
H
.
Periodontal Ligament Stem Cells: Regenerative Potency in Periodontium
.
Stem Cells Dev
.
2019
;
28
(
15
):
974
85
. .
36.
Urwanisch
L
,
Luciano
M
,
Horejs-Hoeck
J
.
The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia
.
Int J Mol Sci
.
2021
;
22
(
3
). .
37.
van Niel
G
,
D'Angelo
G
,
Raposo
G
.
Shedding light on the cell biology of extracellular vesicles
.
Nat Rev Mol Cell Biol
.
2018
;
19
(
4
):
213
28
. .
38.
Vats
R
,
Brzoska
T
,
Bennewitz
MF
,
Jimenez
MA
,
Pradhan-Sundd
T
,
Tutuncuoglu
E
,
Platelet Extracellular Vesicles Drive Inflammasome-IL-1β-Dependent Lung Injury in Sickle Cell Disease
.
Am J Respir Crit Care Med
.
2020
;
201
(
1
):
33
46
. .
39.
Wang
Y
,
Ding
N
,
Guan
G
,
Liu
G
,
Huo
D
,
Li
Y
,
Rapid Delivery of Hsa-miR-590-3p Using Targeted Exosomes to Treat Acute Myocardial Infarction Through Regulation of the Cell Cycle
.
J Biomed Nanotechnol
.
2018
;
14
(
5
):
968
77
. .
40.
Wang
Z
,
Maruyama
K
,
Sakisaka
Y
,
Suzuki
S
,
Tada
H
,
Suto
M
,
Cyclic Stretch Force Induces Periodontal Ligament Cells to Secrete Exosomes That Suppress IL-1β Production Through the Inhibition of the NF-κB Signaling Pathway in Macrophages
.
Front Immunol
.
2019
;
10
:
1310
. .
41.
Wang
Y
,
Han
B
,
Wang
Y
,
Wang
C
,
Zhang
H
,
Xue
J
,
Mesenchymal stem cell-secreted extracellular vesicles carrying TGF-β1 up-regulate miR-132 and promote mouse M2 macrophage polarization
.
J Cell Mol Med
.
2020
;
24
(
21
):
12750
64
. .
42.
Wei
Z
,
Liu
J
,
Xie
H
,
Wang
B
,
Wu
J
,
Zhu
Z
.
MiR-122-5p Mitigates Inflammation, Reactive Oxygen Species and SH-SY5Y Apoptosis by Targeting CPEB1 After Spinal Cord Injury Via the PI3K/AKT Signaling Pathway
.
Neurochem Res
.
2021
;
46
(
4
):
992
1005
. .
43.
Xiang
Y
,
Li
Y
,
Yang
L
,
He
Y
,
Jia
D
,
Hu
X
.
miR-142-5p as a CXCR4-Targeted MicroRNA Attenuates SDF-1-Induced Chondrocyte Apoptosis and Cartilage Degradation via Inactivating MAPK Signaling Pathway
.
Biochem Res Int
.
2020
;
2020
:
4508108
. .
44.
Yao
Y
,
Simard
AR
,
Shi
FD
,
Hao
J
.
IL-10-producing lymphocytes in inflammatory disease
.
Int Rev Immunol
.
2013
;
32
(
3
):
324
36
. .
45.
Yao
Y
,
Sun
W
,
Sun
Q
,
Jing
B
,
Liu
S
,
Liu
X
,
Platelet-Derived Exosomal MicroRNA-25-3p Inhibits Coronary Vascular Endothelial Cell Inflammation Through Adam10 via the NF-kappaB Signaling Pathway in ApoE(-/-) Mice
.
Front Immunol
.
2019
;
10
:
2205
.
46.
Yilmaz
Ö
,
Lee
KL
.
The inflammasome and danger molecule signaling: at the crossroads of inflammation and pathogen persistence in the oral cavity
.
Periodontol 2000
.
2015
;
69
(
1
):
83
95
. .
47.
Yu
B
,
Hu
J
,
Li
Q
,
Wang
F
.
CircMAP3K11 Contributes to Proliferation, Apoptosis and Migration of Human Periodontal Ligament Stem Cells in Inflammatory Microenvironment by Regulating TLR4 via miR-511 Sponging
.
Front Pharmacol
.
2021
;
12
:
633353
. .
48.
Zhang
L
,
Xing
R
,
Huang
Z
,
Zhang
N
,
Zhang
L
,
Li
X
,
Inhibition of Synovial Macrophage Pyroptosis Alleviates Synovitis and Fibrosis in Knee Osteoarthritis
.
Mediators Inflamm
.
2019
;
2019
:
2165918
. .
49.
Zhao
J
,
Geng
W
,
Wan
K
,
Guo
K
,
Xi
F
,
Xu
X
,
Lipoxin A4 promotes autophagy and inhibits overactivation of macrophage inflammasome activity induced by Pg LPS
.
J Int Med Res
.
2021
;
49
(
2
):
300060520981259
. .
50.
Zhou
X
,
Wang
Q
,
Nie
L
,
Zhang
P
,
Zhao
P
,
Yuan
Q
,
Metformin ameliorates the NLPP3 inflammasome mediated pyroptosis by inhibiting the expression of NEK7 in diabetic periodontitis
.
Arch Oral Biol
.
2020
;
116
:
104763
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.