Tissue engineering is a promising approach to overcome the severe worldwide shortage of healthy donor corneas. In this work, we have developed a silk-gelatin composite scaffold using electrospinning and permeation techniques to achieve the properties comparable to cornea analog. In particular, we present the fabrication and comparative evaluation of the novel gelatin sheets consisting of silk fibroin nanofibers, which are prepared using silk fibroin (SF) (in formic acid) and SF (in aqueous) electrospun scaffolds, for its suitability as corneal stromal analogs. All the fabricated samples were treated with ethanol vapor (T) to physically crosslink the silk nanofibers. Micro/nano-scale features of the fabricated scaffolds were analyzed using scanning electron microscopy micrographs. Fourier transform infrared spectroscopy revealed characteristic peaks of polymeric functional groups and modifications upon ethanol vapor treatment. Transparency of the scaffolds was determined using UV-visible spectra. Among all the fabricated samples, the gelatin-permeated SF (in formic acid; T) scaffold showed the highest level of transparency, i.e., 77.75 ± 2.3%, which is similar to that of the native cornea (∼70%–90% [variable with age group]) with healthy acute vision. Contact angle of the samples was studied to estimate the hydrophilicity of the scaffolds. All the scaffolds except non-treated SF (in aqueous; NT) were found to be significantly stable up to 14 days when incubated in phosphate buffered saline at 37°C. Treated samples showed significantly better stability, both physically and microscopically, in comparison to nontreated samples. Proliferation and viability assays of rabbit corneal fibroblast cells (SIRC) and mouse fibroblast cells (L929 RFP) when cultured on fabricated scaffolds revealed remarkable cellular compatibility with gelatin-permeated SF (in formic acid; T) scaffolds compared to SF (in aqueous; T). Unlike other reports in the existing literature, this work presents the design and development of a nanofibrous silk-gelatin composite that exhibits acceptable transparency, cellular biocompatibility, as well as improved mechanical stability comparable to that of native cornea. Therefore, we anticipate that the fabricated novel scaffold is likely to be a good candidate for corneal tissue construct. Moreover, among the fabricated scaffolds, the outcomes depict gelatin-permeated SF (in formic acid; T) composite scaffold to be a better candidate as a corneal stromal analog that carries properties of both the silk and gelatin, i.e., optimal transparency, better stability, and enhanced cytocompatibility.

1.
Acun
A
,
Hasirci
V
.
Construction of a collagen-based, split-thickness cornea substitute
.
J Biomater Sci Polym Ed
.
2014
;
25
(
11
):
1110
32
. .
2.
Adamis
AP
,
Filatov
V
,
Tripathi
BJ
,
Tripathimesh
RCC
.
Fuchs' endothelial dystrophy of the cornea
.
Surv Ophthalmol
.
1993
;
38
(
2
):
149
68
. .
3.
Ahearne
M
,
Fernández
-
Pérez
J
,
Masterton
S
,
Madden
PW
,
Bhattacharjee
P
.
Designing Scaffolds for Corneal Regeneration
.
Adv Funct Mater
.
2020
;
3
:
1908996
.
4.
Ahmad
Z
,
Kumar
KD
,
Saroop
M
,
Preschilla
N
,
Biswas
A
,
Bellare
JR
,
Highly transparent thermoplastic elastomer from isotactic polypropylene and styrene/ethylene-butylene/styrene triblock copolymer: Structure-property correlations
.
Polym Eng Sci
.
2010
;
50
(
2
):
331
41
. .
5.
Aldana
AA
,
Abraham
GA
.
Current advances in electrospun gelatin-based scaffolds for tissue engineering applications
.
Int J Pharm
.
2017
;
523
(
2
):
441
53
. .
6.
Amano
S
,
Shimomura
N
,
Yokoo
S
,
Araki-Sasaki
K
,
Yamagami
S
.
Decellularizing corneal stroma using N2 gas
.
Mol Vis
.
2008
;
14
:
878
82
.
7.
Amiraliyan
N
,
Nouri
M
,
Haghighat Kish
M
.
Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats
.
Polym Sci Ser A
.
2010
;
52
(
4
):
407
12
. .
8.
Babitha
S
,
Rachita
L
,
Karthikeyan
K
,
Shoba
E
,
Janani
I
,
Poornima
B
,
Electrospun protein nanofibers in healthcare: A review
.
Int J Pharm
.
2017
;
523
(
1
):
52
90
. .
9.
Badylak
SF
,
Taylor
D
,
Uygun
K
.
Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds
.
Annu Rev Biomed Eng
.
2011
;
13
:
27
53
. .
10.
Baradaran-Rafii
A
,
Biazar
E
,
Heidari-Keshel
S
.
Cellular Response of Limbal Stem Cells on PHBV/Gelatin Nanofibrous Scaffold for Ocular Epithelial Regeneration
.
International Journal of Polymeric Materials and Polymeric Biomaterials
.
2015
;
64
(
17
):
879
87
. .
11.
Beems
EM
,
Van Best
JA
.
Light transmission of the cornea in whole human eyes
.
Exp Eye Res
.
1990
;
50
(
4
):
393
5
. .
12.
Belovay
GW
,
Goldberg
I
.
The thick and thin of the central corneal thickness in glaucoma
.
Eye (Lond)
.
2018
;
32
(
5
):
915
23
. .
13.
Bhattarai
RS
,
Das
A
,
Alzhrani
RM
,
Kang
D
,
Bhaduri
SB
,
Boddu
SHS
.
Comparison of electrospun and solvent cast polylactic acid (PLA)/poly(vinyl alcohol) (PVA) inserts as potential ocular drug delivery vehicles
.
Mater Sci Eng C Mater Biol Appl
.
2017
;
77
:
895
903
. .
14.
Biazar
E
,
Baradaran-Rafii
A
,
Heidari-keshel
S
,
Tavakolifard
S
.
Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration
.
J Biomater Sci Polym Ed
.
2015
;
26
(
16
):
1139
51
. .
15.
Bolaños-Jiménez
R
,
Navas
A
,
López-Lizárraga
EP
,
de Ribot
FM
,
Peña
A
,
Graue-Hernández
EO
,
Ocular Surface as Barrier of Innate Immunity
.
Open Ophthalmol J
.
2015
;
9
:
49
55
. .
16.
Boote
C
,
Hayes
S
,
Abahussin
M
,
Meek
KM
.
Mapping Collagen Organization in the Human Cornea: Left and Right Eyes Are Structurally Distinct
.
Invest Ophthalmol Vis Sci
.
2006
;
47
(
3
):
901
8
. .
17.
Buitrago
JO
,
Patel
KD
,
El-Fiqi
A
,
Lee
J-H
,
Kundu
B
,
Lee
H-H
,
Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties
.
Acta Biomater
.
2018
;
69
:
218
33
.
18.
Cao
H
,
Chen
X
,
Huang
L
,
Shao
Z
.
Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution
.
Materials Science and Engineering: C
.
2009
;
29
(
7
):
2270
4
. .
19.
Cho
SY
,
Lee
ME
,
Choi
Y
,
Jin
H-J
.
Cellulose nanofiber-reinforced silk fibroin composite film with high transparency
.
Fibers Polym
.
2014
;
15
(
2
):
215
9
. .
20.
Chouhan
D
,
Chakraborty
B
,
Nandi
SK
,
Mandal
BB
.
Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing
.
Acta Biomater
.
2017
;
48
:
157
74
. .
21.
De Santis
F
,
Pantani
R
.
Optical Properties of Polypropylene upon Recycling
.
ScientificWorldJournal
.
2013
;
2013
:
354093
. .
22.
Doutch
J
,
Quantock
AJ
,
Smith
VA
,
Meek
KM
.
Light Transmission in the Human Cornea as a Function of Position across the Ocular Surface: Theoretical and Experimental Aspects
.
Biophys J
.
2008
;
95
(
11
):
5092
9
. .
23.
Echave
MC
,
Saenz del Burgo
L
,
Pedraz
JL
,
Orive
G
.
Gelatin as Biomaterial for Tissue Engineering
.
Curr Pharm Des
.
2017
;
23
(
24
):
3567
84
. .
24.
Edwards
A
,
Prausnitz
MR
.
Fiber matrix model of sclera and corneal stroma for drug delivery to the eye
.
AIChE J
.
1998
;
44
(
1
):
214
25
. .
25.
Eghrari
AO
,
Gottsch
JD
.
Fuchs' corneal dystrophy
.
Expert Rev Ophthalmol
.
2010
;
5
(
2
):
147
59
. .
26.
Fan
L
,
Wang
H
,
Zhang
K
,
He
C
,
Cai
Z
,
Mo
X
.
Regenerated silk fibroin nanofibrous matrices treated with 75% ethanol vapor for tissue-engineering applications
.
J Biomater Sci Polym Ed
.
2012
;
23
(
1-4
):
497
508
. .
27.
Farasatkia
A
,
Kharaziha
M
,
Ashrafizadeh
F
,
Salehi
S
.
Transparent silk/gelatin methacrylate (GelMA) fibrillar film for corneal regeneration
.
Materials Science and Engineering: C
.
2021
;
120
:
111744
. .
28.
Freddi
G
,
Romanò
M
,
Massafra
MR
,
Tsukada
M
.
Silk fibroin/cellulose blend films: Preparation, structure, and physical properties
.
J Appl Polym Sci
.
1995
;
56
(
12
):
1537
45
. .
29.
Freegard
TJ
.
The physical basis of transparency of the normal cornea
.
Eye (Lond)
.
1997
;
11(Pt 4)
:
465
71
. .
30.
Gandhi
M
,
Yang
H
,
Shor
L
,
Ko
F
.
Post-spinning modification of electrospun nanofiber nanocomposite from Bombyx mori silk and carbon nanotubes
.
Polymer
.
2009
;
50
(
8
):
1918
24
. .
31.
Ghezzi
CE
,
Rnjak-Kovacina
J
,
Kaplan
DL
.
Corneal tissue engineering: recent advances and future perspectives
.
Tissue Eng Part B Rev
.
2015
;
21
(
3
):
278
87
. .
32.
Griffith
LG
,
Naughton
G
.
Tissue engineering--current challenges and expanding opportunities
.
Science
.
2002
;
295
(
5557
):
1009
14
. .
33.
Gui-Bo
Y
,
You-Zhu
Z
,
Shu-Dong
W
,
De-Bing
S
,
Zhi-Hui
D
,
Wei-Guo
F
.
Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering
.
J Biomed Mater Res A
.
2010 Apr
;
93
(
1
):
158
63
.
34.
Haider
A
,
Haider
S
,
Kang
I-K
.
A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology
.
Arabian Journal of Chemistry
.
2018
;
11
(
8
):
1165
88
. .
35.
Hashimoto
Y
,
Funamoto
S
,
Sasaki
S
,
Honda
T
,
Hattori
S
,
Nam
K
,
Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering
.
Biomaterials
.
2010
;
31
(
14
):
3941
8
. .
36.
Hazra
S
,
Nandi
S
,
Naskar
D
,
Guha
R
,
Chowdhury
S
,
Pradhan
N
,
Non-mulberry Silk Fibroin Biomaterial for Corneal Regeneration
.
Sci Rep
.
2016
;
6
:
21840
. .
37.
Hu
X
,
Kaplan
D
,
Cebe
P
.
Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy
.
Macromolecules
.
2006
;
39
(
18
):
6161
70
. .
38.
Ibrahim
DM
,
Kakarougkas
A
,
Allam
NK
.
Recent advances on electrospun scaffolds as matrices for tissue-engineered heart valves
.
Materials Today Chemistry
.
2017
;
5
:
11
23
. .
39.
Ifuku
S
,
Ikuta
A
,
Egusa
M
,
Kaminaka
H
,
Izawa
H
,
Morimoto
M
,
Preparation of high-strength transparent chitosan film reinforced with surface-deacetylated chitin nanofibers
.
Carbohydr Polym
.
2013
;
98
(
1
):
1198
202
. .
40.
Isaacson
A
,
Swioklo
S
,
Connon
CJ
.
3D bioprinting of a corneal stroma equivalent
.
Exp Eye Res
.
2018
;
173
:
188
93
. .
41.
Jang
J
,
Kim
TG
,
Kim
BS
,
Kim
SW
,
Kwon
SM
,
Cho
DW
.
Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking
.
Acta Biomater
.
2016
;
33
:
88
95
. .
42.
Jin
H-J
,
Park
J
,
Karageorgiou
V
,
Kim
U-J
,
Valluzzi
R
,
Cebe
P
,
Water-Stable Silk Films with Reduced β-Sheet Content
.
Adv Funct Mater
.
2005
;
15
(
8
):
1241
7
. .
43.
Karamichos
D
.
Ocular Tissue Engineering: Current and Future Directions
.
J Funct Biomater
.
2015
;
6
(
1
):
77
80
. .
44.
Kishimoto
Y
,
Morikawa
H
,
Yamanaka
S
,
Tamada
Y
.
Electrospinning of silk fibroin from all aqueous solution at low concentration
.
Mater Sci Eng C Mater Biol Appl
.
2017
;
73
:
498
506
. .
45.
Kishimoto
Y
,
Kobashi
T
,
Yamanaka
S
,
Morikawa
H
,
Tamada
Y
.
Comparisons between silk fibroin nonwoven electrospun fabrics using aqueous and formic acid solutions
.
International Journal of Polymeric Materials and Polymeric Biomaterials
.
2018
;
67
(
7
):
462
7
. .
46.
Koeppel
A
,
Laity
PR
,
Holland
C
.
Extensional flow behaviour and spinnability of native silk
.
Soft Matter
.
2018
;
14
(
43
):
8838
45
. .
47.
Kong
B
,
Mi
S
.
Electrospun Scaffolds for Corneal Tissue Engineering: A Review
.
Materials (Basel)
.
2016
;
9
(
8
):
614
. .
48.
Kong
B
,
Sun
W
,
Chen
G
,
Tang
S
,
Li
M
,
Shao
Z
,
Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat
.
Sci Rep
.
2017
;
7
(
1
):
970
. .
49.
Kumar
A
,
Yu
FS
.
Toll-Like Receptors and Corneal Innate Immunity
.
Curr Mol Med
.
2006
;
6
(
3
):
327
37
. .
50.
Lee
P
,
Wang
CC
,
Adamis
AP
.
Ocular neovascularization: an epidemiologic review
.
Surv Ophthalmol
.
1998
;
43
(
3
):
245
69
. .
51.
Lerman
S
.
Biophysical aspects of corneal and lenticular transparency
.
Curr Eye Res
.
1984
;
3
(
1
):
3
14
. .
52.
Li
D
,
Xia
Y
.
Electrospinning of Nanofibers: Reinventing the Wheel?
Adv Mater
.
2004
;
16
(
14
):
1151
70
. .
53.
Lin
L
,
Jin
X
.
The development of tissue engineering corneal scaffold: which one the history will choose?
Ann Eye Sci
.
2018
;
3
:
6
. .
54.
Liu
Y
,
Ren
L
,
Wang
Y
.
A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique
.
Applied Surface Science
.
2014
;
301
:
396
400
. .
55.
Lynch
AP
,
Wilson
SL
,
Ahearne
M
.
Dextran Preserves Native Corneal Structure During Decellularization
.
Tissue Eng Part C Methods
.
2016
;
22
(
6
):
561
72
. .
56.
Matthyssen
S
,
Van den Bogerd
B
,
Dhubhghaill
SN
,
Koppen
C
,
Zakaria
N
.
Corneal regeneration: A review of stromal replacements
.
Acta Biomater
.
2018
;
69
:
31
41
. .
57.
Michalak
M
,
Łatka
L
,
Szymczyk
P
,
Sokołowski
P
.
Computational image analysis of Suspension Plasma Sprayed YSZ coatings
.
ITM Web Conf
.
2017
;
15
:
06004
. .
58.
Min
BM
,
Lee
G
,
Kim
SH
,
Nam
YS
,
Lee
TS
,
Park
WH
.
Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro
.
Biomaterials
.
2004
;
25
(
7-8
):
1289
97
. .
59.
Min
B-M
,
Jeong
L
,
Lee
KY
,
Park
WH
.
Regenerated Silk Fibroin Nanofibers: Water Vapor-Induced Structural Changes and Their Effects on the Behavior of Normal Human Cells
.
Macromol Biosci
.
2006
;
6
:
285
92
.
60.
Minoura
N
,
Tsukada
M
,
Nagura
M
.
Physico-chemical properties of silk fibroin membrane as a biomaterial
.
Biomaterials
.
1990
;
11
(
6
):
430
4
. .
61.
Mitropoulos
AN
,
Marelli
B
,
Ghezzi
CE
,
Applegate
MB
,
Partlow
BP
,
Kaplan
DL
,
Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Mechanical Properties
.
ACS Biomater Sci Eng
.
2015
;
1
(
10
):
964
70
. .
62.
Mohammadzadehmoghadam
S
,
Dong
Y
.
Fabrication and Characterization of Electrospun Silk Fibroin/Gelatin Scaffolds Crosslinked With Glutaraldehyde Vapor
.
Front Mater
.
2019
;
6
:
91
. .
63.
Murphy
CM
,
Haugh
MG
,
O’Brien
FJ
.
The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering
.
Biomaterials
.
2010
;
31
(
3
):
461
6
. .
64.
Nogi
M
,
Iwamoto
S
,
Nakagaito
AN
,
Yano
H
.
Optically Transparent Nanofiber Paper
.
Adv Mater
.
2009
;
21
(
16
):
1595
8
. .
65.
Okhawilai
M
,
Rangkupan
R
,
Kanokpanont
S
,
Damrongsakkul
S
.
Preparation of Thai silk fibroin/gelatin electrospun fiber mats for controlled release applications
.
Int J Biol Macromol
.
2010
;
46
(
5
):
544
50
. .
66.
Phadatare
SP
,
Momin
M
,
Nighojkar
P
,
Askarkar
S
,
Singh
KK
.
A Comprehensive Review on Dry Eye Disease: Diagnosis, Medical Management, Recent Developments, and Future Challenges
.
Advances in Pharmaceutics
.
2015
;
2015
:
1
12
. .
67.
Pricopie
S
,
Istrate
S
,
Voinea
L
,
Leasu
C
,
Paun
V
,
Radu
C
.
Pseudophakic bullous keratopathy
.
Rom J Ophthalmol
.
2017 Apr-Jun
;
61
(
2
):
90
4
. .
68.
Qazi
Y
,
Wong
G
,
Monson
B
,
Stringham
J
,
Ambati
BK
.
Corneal transparency: genesis, maintenance and dysfunction
.
Brain Res Bull
.
2010
;
81
(
2-3
):
198
210
. .
69.
Qi
Y
,
Wang
H
,
Wei
K
,
Yang
Y
,
Zheng
RY
,
Kim
IS
,
A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures
.
Int J Mol Sci
.
2017
;
18
(
3
):
237
. .
70.
Rockwood
DN
,
Preda
RC
,
Yücel
T
,
Wang
X
,
Lovett
ML
,
Kaplan
DL
.
Materials Fabrication from Bombyx mori Silk Fibroin
.
Nat Protoc
.
2011
;
6
(
10
):
1612
. .
71.
Rose
JB
,
Pacelli
S
,
Haj
AJE
,
Dua
HS
,
Hopkinson
A
,
White
LJ
,
Gelatin-Based Materials in Ocular Tissue Engineering
.
Materials (Basel)
.
2014
;
7
(
4
):
3106
35
. .
72.
Sahi
AK
,
Varshney
N
,
Poddar
S
,
Mahto
SK
.
Comparative behaviour of electrospun nanofibers fabricated from acid and alkaline hydrolysed gelatin: towards corneal tissue engineering
.
J Polym Res
.
2020
;
27
(
11
):
344
. .
73.
Shan
YH
,
Peng
LH
,
Liu
X
,
Chen
X
,
Xiong
J
,
Gao
JQ
.
Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound
.
Int J Pharm
.
2015
;
479
(
2
):
291
301
. .
74.
Sharif
R
,
Priyadarsini
S
,
Rowsey
TG
,
Ma
J-X
,
Karamichos
D
.
Corneal Tissue Engineering: An In Vitro Model of the Stromal-nerve Interactions of the Human Cornea
.
J Vis Exp
.
2018 Jan 24
;(
131
):
56308
. .
75.
Shen
G
,
Hu
X
,
Guan
G
,
Wang
L
.
Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin
.
PLOS ONE
.
2015
;
10
(
4
):
e0124811
. .
76.
Sun
M
,
Sun
X
,
Wang
Z
,
Guo
S
,
Yu
G
,
Yang
H
.
Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue
.
Polymers (Basel)
.
2018
;
10
.
77.
Swamynathan
SK
.
Ocular Surface Development and Gene Expression
.
J Ophthalmol
.
2013
;
2013
:
103947
. .
78.
Taddei
P
,
Chiono
V
,
Anghileri
A
,
Vozzi
G
,
Freddi
G
,
Ciardelli
G
.
Silk Fibroin/Gelatin Blend Films Crosslinked with Enzymes for Biomedical Applications
.
Macromol Biosci
.
2013
;
13
(
11
):
1492
510
. .
79.
Tonsomboon
K
,
Oyen
ML
.
Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea
.
J Mech Behav Biomed Mater
.
2013
;
21
:
185
94
. .
80.
Upadhyay
MP
,
Srinivasan
M
,
Whitcher
JP
.
Diagnosing and managing microbial keratitis
.
Community Eye Health
.
2015
;
28
(
89
):
3
6
.
81.
Varshney
N
,
Sahi
AK
,
Vajanthri
KY
,
Poddar
S
,
Balavigneswaran
CK
,
Prabhakar
A
,
Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material
.
Cytotechnology
.
2019
;
71
(
1
):
287
303
. .
82.
Varshney
N
,
Sahi
AK
,
Poddar
S
,
Mahto
SK
.
Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization
.
Int J Biol Macromol
.
2020
;
160
:
112
27
. .
83.
Wang
M
,
Jin
H-J
,
Kaplan
DL
,
Rutledge
GC
.
Mechanical Properties of Electrospun Silk Fibers
.
Macromolecules
.
2004
;
37
(
18
):
6856
64
. .
84.
Wong
KH
,
Kam
KW
,
Chen
LJ
,
Young
AL
.
Corneal blindness and current major treatment concern-graft scarcity
.
Int J Ophthalmol
.
2017
;
10
(
7
):
1154
62
. .
85.
Yan
J
,
Qiang
L
,
Gao
Y
,
Cui
X
,
Zhou
H
,
Zhong
S
,
Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior
.
J Biomed Mater Res A
.
2012
;
100
(
2
):
527
35
. .
86.
Yang M, Shuai Y, He W, Min S, Zhu L. Preparation of porous scaffolds from silk fibroin extracted from the silk gland of Bombyx mori (B. mori). Int J Mol Sci. 2012;13(6):7762–75.
87.
Yao
L
,
Haas
TW
,
Guiseppi-Elie
A
,
Bowlin
GL
,
Simpson
DG
,
Wnek
GE
.
Electrospinning and Stabilization of Fully Hydrolyzed Poly(Vinyl Alcohol) Fibers
.
Chem Mater
.
2003
;
15
(
9
):
1860
4
. .
88.
Ye
J
,
Shi
X
,
Chen
X
,
Xie
J
,
Wang
C
,
Yao
K
,
Chitosan-modified, collagen-based biomimetic nanofibrous membranes as selective cell adhering wound dressings in the treatment of chemically burned corneas
.
J Mater Chem B
.
2014
;
2
(
27
):
4226
36
. .
89.
Yin-Guibo, Zhang-Youzhu, Bao-Weiwei, Wu-Jialin, De-bing S, Zhi-hui D, et al. Study on the properties of the electrospun silk fibroin/gelatin blend nanofibers for scaffolds. J Appl Polym Sci. 2009;111:1471–7.
90.
Yoshio
H
,
Lagercrantz
H
,
Gudmundsson
GH
,
Agerberth
B
.
First line of defense in early human life
.
Semin Perinatol
.
2004
;
28
(
4
):
304
11
. .
91.
Yusoff
NISM
,
Wahit
MU
,
Jaafar
J
,
Wong
TW
.
Structural and characterization studies of insoluble thai bombyx mori silk fibroin films
.
Mal J Fund Appl Sci
.
2019
;
15
(
1
):
18
22
.
92.
Zeng
Y
,
Yang
J
,
Huang
K
,
Lee
Z
,
Lee
X
.
A comparison of biomechanical properties between human and porcine cornea
.
J Biomech
.
2001
;
34
(
4
):
533
7
. .
93.
Zhao
G
,
Zhang
X
,
Lu
TJ
,
Xu
F
.
Recent Advances in Electrospun Nanofibrous Scaffolds for Cardiac Tissue Engineering
.
Adv Funct Mater
.
2015
;
25
(
36
):
5726
38
. .
94.
Zhao
F
,
Du
F
,
Zhang
J
,
Xu
J
.
Trends in Research Related to Keratoconus From 2009 to 2018: A Bibliometric and Knowledge Mapping Analysis
.
Cornea
.
2019
;
38
(
7
):
847
54
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.