Bone grafting is the second most common tissue transplantation procedure worldwide. One of the alternative methods for bone repair under investigation is a tissue-engineered bone substitute. An ideal property of tissue-engineered bone substitutes is osteoinductivity, defined as the ability to stimulate primitive cells to differentiate into a bone-forming lineage. In the current study, we use a decellularization and oxidation protocol to produce a porcine bone scaffold and examine whether it possesses osteoinductive potential and can be used to create a tissue-engineered bone microenvironment. The decellularization protocol was patented by our lab and consists of chemical decellularization and oxidation steps using combinations of deionized water, trypsin, antimicrobials, peracetic acid, and triton-X100. To test if the bone scaffold was a viable host, preosteoblasts were seeded and analyzed for markers of osteogenic differentiation. The osteoinductive potential was observed in vitro with similar osteogenic markers being expressed in preosteoblasts seeded on the scaffolds and demineralized bone matrix. To assess these properties in vivo, scaffolds with and without preosteoblasts preseeded were subcutaneously implanted in mice for 4 weeks. MicroCT scanning revealed 1.6-fold increased bone volume to total volume ratio and 1.4-fold increase in trabecular thickness in scaffolds after implantation. The histological analysis demonstrates new bone formation and blood vessel formation with pentachrome staining demonstrating osteogenesis and angiogenesis, respectively, within the scaffold. Furthermore, CD31+ staining confirmed the endothelial lining of the blood vessels. These results demonstrate that porcine bone maintains its osteoinductive properties after the application of a patented decellularization and oxidation protocol developed in our laboratory. Future work must be performed to definitively prove osteogenesis of human mesenchymal stem cells, biocompatibility in large animal models, and osteoinduction/osseointegration in a relevant clinical model in vivo. The ability to create a functional bone microenvironment using decellularized xenografts will impact regenerative medicine, orthopedic reconstruction, and could be used in the research of multiple diseases.

1.
Albrektsson
T
,
Johansson
C
.
Osteoinduction, osteoconduction and osseointegration
.
Eur Spine J
.
2001
Oct
;
10
(
0
Suppl 2
):
S96
101
.
[PubMed]
0940-6719
2.
Ansari
S
,
Moshaverinia
A
,
Pi
SH
,
Han
A
,
Abdelhamid
AI
,
Zadeh
HH
.
Functionalization of scaffolds with chimeric anti-BMP-2 monoclonal antibodies for osseous regeneration
.
Biomaterials
.
2013
Dec
;
34
(
38
):
10191
8
.
[PubMed]
0142-9612
3.
Araujo-Gomes
,
N.
,
F.
Romero-Gavilan
,
I.
Garcia-Arnaez
,
C.
Martinez-Ramos
,
A.M.
Sanchez-Perez
,
M.
Azkargorta
,
F.
Elortza
,
J.J.M.
de Llano
,
M.
Gurruchaga
,
I.
Goni
,
J.
Suay
(
2018
)
Osseointegration mechanisms: a proteomic approach.
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry.
4.
Arca
T
,
Proffitt
J
,
Genever
P
.
Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications
.
Biomed Mater
.
2011
Apr
;
6
(
2
):
025006
.
[PubMed]
1748-6041
5.
Berner
A
,
Boerckel
JD
,
Saifzadeh
S
,
Steck
R
,
Ren
J
,
Vaquette
C
, et al.
Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration
.
Cell Tissue Res
.
2012
Mar
;
347
(
3
):
603
12
.
[PubMed]
0302-766X
6.
Bhumiratana
S
,
Bernhard
JC
,
Alfi
DM
,
Yeager
K
,
Eton
RE
,
Bova
J
, et al.
Tissue-engineered autologous grafts for facial bone reconstruction
.
Sci Transl Med
.
2016
Jun
;
8
(
343
):
343ra83
.
[PubMed]
1946-6234
7.
Bormann
N
,
Pruss
A
,
Schmidmaier
G
,
Wildemann
B
.
In vitro testing of the osteoinductive potential of different bony allograft preparations
.
Arch Orthop Trauma Surg
.
2010
Jan
;
130
(
1
):
143
9
.
[PubMed]
0936-8051
8.
Bracey
DN
,
Seyler
TM
,
Jinnah
AH
,
Lively
MO
,
Willey
JS
,
Smith
TL
, et al.
A Decellularized Porcine Xenograft-Derived Bone Scaffold for Clinical Use as a Bone Graft Substitute: A Critical Evaluation of Processing and Structure
.
J Funct Biomater
.
2018
Jul
;
9
(
3
):
E45
.
[PubMed]
2079-4983
9.
Bracey
DN
,
Seyler
TM
,
Jinnah
AH
,
Smith
TL
,
Ornelles
DA
,
Deora
R
, et al.
A porcine xenograft-derived bone scaffold is a biocompatible bone graft substitute: an assessment of cytocompatibility and the alpha-Gal epitope
.
Xenotransplantation
.
2019
Jul
;
•••
:
e12534
.
[PubMed]
0908-665X
10.
Calori
GM
,
Mazza
E
,
Colombo
M
,
Ripamonti
C
.
The use of bone-graft substitutes in large bone defects: any specific needs?
Injury
.
2011
Sep
;
42
Suppl 2
:
S56
63
.
[PubMed]
0020-1383
11.
Campana
V
,
Milano
G
,
Pagano
E
,
Barba
M
,
Cicione
C
,
Salonna
G
, et al.
Bone substitutes in orthopaedic surgery: from basic science to clinical practice
.
J Mater Sci Mater Med
.
2014
Oct
;
25
(
10
):
2445
61
.
[PubMed]
0957-4530
12.
Chan
EC
,
Kuo
SM
,
Kong
AM
,
Morrison
WA
,
Dusting
GJ
,
Mitchell
GM
, et al.
Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications
.
PLoS One
.
2016
Feb
;
11
(
2
):
e0149799
.
[PubMed]
1932-6203
13.
Chen
Y
,
Chen
S
,
Kawazoe
N
,
Chen
G
.
Promoted Angiogenesis and Osteogenesis by Dexamethasone-loaded Calcium Phosphate Nanoparticles/Collagen Composite Scaffolds with Microgroove Networks
.
Sci Rep
.
2018
Sep
;
8
(
1
):
14143
.
[PubMed]
2045-2322
14.
Chocholata
P
,
Kulda
V
,
Babuska
V
.
Fabrication of Scaffolds for Bone-Tissue Regeneration
.
Materials (Basel)
.
2019
Feb
;
12
(
4
):
E568
.
[PubMed]
1996-1944
15.
Cooper
,
D.K.C.
,
B.
Ekser
,
A.J.
Tector
(
2015
)
Immunobiological barriers to xenotransplantation.
International journal of surgery 23(Pt B): 211-216.
16.
De Long
WG
 Jr
,
Einhorn
TA
,
Koval
K
,
McKee
M
,
Smith
W
,
Sanders
R
, et al.
Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis
.
J Bone Joint Surg Am
.
2007
Mar
;
89
(
3
):
649
58
.
[PubMed]
0021-9355
17.
Fassbender
M
,
Minkwitz
S
,
Thiele
M
,
Wildemann
B
.
Efficacy of two different demineralised bone matrix grafts to promote bone healing in a critical-size-defect: a radiological, histological and histomorphometric study in rat femurs
.
Int Orthop
.
2014
Sep
;
38
(
9
):
1963
9
.
[PubMed]
0341-2695
18.
Feichtinger
GA
,
Morton
TJ
,
Zimmermann
A
,
Dopler
D
,
Banerjee
A
,
Redl
H
, et al.
Enhanced reporter gene assay for the detection of osteogenic differentiation
.
Tissue Eng Part C Methods
.
2011
Apr
;
17
(
4
):
401
10
.
[PubMed]
1937-3384
19.
Fielding
G
,
Bose
S
.
SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo
.
Acta Biomater
.
2013
Nov
;
9
(
11
):
9137
48
.
[PubMed]
1742-7061
20.
Fu
C
,
Yang
X
,
Tan
S
,
Song
L
.
Enhancing Cell Proliferation and Osteogenic Differentiation of MC3T3-E1 Pre-osteoblasts by BMP-2 Delivery in Graphene Oxide-Incorporated PLGA/HA Biodegradable Microcarriers
.
Sci Rep
.
2017
Oct
;
7
(
1
):
12549
.
[PubMed]
2045-2322
21.
Giannoni
P
,
Scaglione
S
,
Daga
A
,
Ilengo
C
,
Cilli
M
,
Quarto
R
.
Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration
.
Tissue Eng Part A
.
2010
Feb
;
16
(
2
):
489
99
.
[PubMed]
1937-3341
22.
Grosso
A
,
Burger
MG
,
Lunger
A
,
Schaefer
DJ
,
Banfi
A
,
Di Maggio
N
.
It Takes Two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration
.
Front Bioeng Biotechnol
.
2017
Nov
;
5
:
68
.
[PubMed]
2296-4185
23.
Han
,
B.
,
B.
Tang
,
M.E.
Nimni
(
2003
)
Quantitative and sensitive in vitro assay for osteoinductive activity of demineralized bone matrix.
Journal of orthopaedic research : official publication of the Orthopaedic Research Society 21(4): 648-654.
24.
Hashimoto
Y
,
Funamoto
S
,
Kimura
T
,
Nam
K
,
Fujisato
T
,
Kishida
A
.
The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells
.
Biomaterials
.
2011
Oct
;
32
(
29
):
7060
7
.
[PubMed]
0142-9612
25.
Heo
SY
,
Ko
SC
,
Nam
SY
,
Oh
J
,
Kim
YM
,
Kim
JI
, et al.
Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor
.
Cell Biochem Funct
.
2018
Apr
;
36
(
3
):
137
46
.
[PubMed]
0263-6484
26.
Hesami
P
,
Holzapfel
BM
,
Taubenberger
A
,
Roudier
M
,
Fazli
L
,
Sieh
S
, et al.
A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone
.
Clin Exp Metastasis
.
2014
Apr
;
31
(
4
):
435
46
.
[PubMed]
0262-0898
27.
Hirata
A
,
Ueno
T
,
Moy
PK
.
Newly Formed Bone Induced by Recombinant Human Bone Morphogenetic Protein-2: A Histological Observation
.
Implant Dent
.
2017
Apr
;
26
(
2
):
173
7
.
[PubMed]
1056-6163
28.
Hsu
EL
,
Ghodasra
JH
,
Ashtekar
A
,
Nickoli
MS
,
Lee
SS
,
Stupp
SI
, et al.
A comparative evaluation of factors influencing osteoinductivity among scaffolds designed for bone regeneration
.
Tissue Eng Part A
.
2013
Aug
;
19
(
15-16
):
1764
72
.
[PubMed]
1937-3341
29.
Hupkes
M
,
Sotoca
AM
,
Hendriks
JM
,
van Zoelen
EJ
,
Dechering
KJ
.
MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells
.
BMC Mol Biol
.
2014
Jan
;
15
(
1
):
1
.
[PubMed]
1471-2199
30.
Iaquinta
MR
,
Mazzoni
E
,
Manfrini
M
,
D’Agostino
A
,
Trevisiol
L
,
Nocini
R
, et al.
Innovative Biomaterials for Bone Regrowth
.
Int J Mol Sci
.
2019
Jan
;
20
(
3
):
E618
.
[PubMed]
1661-6596
31.
Kanayama
,
S.
,
T.
Kaito
,
K.
Kitaguchi
,
H.
Ishiguro
,
K.
Hashimoto
,
R.
Chijimatsu
,
S.
Otsuru
,
S.
Takenaka
,
T.
Makino
,
Y.
Sakai
,
A.
Myoui
,
H.
Yoshikawa
(
2017
) ONO-1301 Enhances in vitro Osteoblast Differentiation and in vivo Bone Formation Induced by Bone Morphogenetic Protein. Spine.
32.
Katagiri
T
,
Yamaguchi
A
,
Komaki
M
,
Abe
E
,
Takahashi
N
,
Ikeda
T
, et al.
Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage
.
J Cell Biol
.
1994
Dec
;
127
(
6 Pt 1
):
1755
66
.
[PubMed]
0021-9525
33.
Kerr
BA
,
McCabe
NP
,
Feng
W
,
Byzova
TV
.
Platelets govern pre-metastatic tumor communication to bone
.
Oncogene
.
2013
Sep
;
32
(
36
):
4319
24
.
[PubMed]
0950-9232
34.
Khan
SN
,
Cammisa
FP
 Jr
,
Sandhu
HS
,
Diwan
AD
,
Girardi
FP
,
Lane
JM
.
The biology of bone grafting
.
J Am Acad Orthop Surg
.
2005
Jan-Feb
;
13
(
1
):
77
86
.
[PubMed]
1067-151X
35.
Kolambkar
YM
,
Dupont
KM
,
Boerckel
JD
,
Huebsch
N
,
Mooney
DJ
,
Hutmacher
DW
, et al.
An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects
.
Biomaterials
.
2011
Jan
;
32
(
1
):
65
74
.
[PubMed]
0142-9612
36.
Kouroupis
,
D.
,
T.G.
Baboolal
,
E.
Jones
,
P.V.
Giannoudis
(
2013
)
Native multipotential stromal cell colonization and graft expander potential of a bovine natural bone scaffold.
Journal of orthopaedic research : official publication of the Orthopaedic Research Society.
37.
Liu
Y
,
Möller
B
,
Wiltfang
J
,
Warnke
PH
,
Terheyden
H
.
Tissue engineering of a vascularized bone graft of critical size with an osteogenic and angiogenic factor-based in vivo bioreactor
.
Tissue Eng Part A
.
2014
Dec
;
20
(
23-24
):
3189
97
.
[PubMed]
1937-3341
38.
Liu
G
,
Sun
J
,
Li
Y
,
Zhou
H
,
Cui
L
,
Liu
W
, et al.
Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study
.
Calcif Tissue Int
.
2008
Sep
;
83
(
3
):
176
85
.
[PubMed]
0171-967X
39.
Livak
KJ
,
Schmittgen
TD
.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
.
Methods
.
2001
Dec
;
25
(
4
):
402
8
.
[PubMed]
1046-2023
40.
Lu
X
,
Wang
J
,
Li
B
,
Zhang
Z
,
Zhao
L
.
Gene expression profile study on osteoinductive effect of natural hydroxyapatite
.
J Biomed Mater Res A
.
2013
.
[PubMed]
1549-3296
41.
Marcos-Campos
I
,
Marolt
D
,
Petridis
P
,
Bhumiratana
S
,
Schmidt
D
,
Vunjak-Novakovic
G
.
Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells
.
Biomaterials
.
2012
Nov
;
33
(
33
):
8329
42
.
[PubMed]
0142-9612
42.
McCabe
NP
,
Kerr
BA
,
Madajka
M
,
Vasanji
A
,
Byzova
TV
.
Augmented osteolysis in SPARC-deficient mice with bone-residing prostate cancer
.
Neoplasia
.
2011
Jan
;
13
(
1
):
31
9
.
[PubMed]
1522-8002
43.
Miron
RJ
,
Saulacic
N
,
Buser
D
,
Iizuka
T
,
Sculean
A
.
Osteoblast proliferation and differentiation on a barrier membrane in combination with BMP2 and TGFβ1
.
Clin Oral Investig
.
2013
Apr
;
17
(
3
):
981
8
.
[PubMed]
1432-6981
44.
Muschler
GF
,
Nakamoto
C
,
Griffith
LG
.
Engineering principles of clinical cell-based tissue engineering
.
J Bone Joint Surg Am
.
2004
Jul
;
86
(
7
):
1541
58
.
[PubMed]
0021-9355
45.
Nakai
T
,
Yoshimura
Y
,
Deyama
Y
,
Suzuki
K
,
Iida
J
.
Mechanical stress up-regulates RANKL expression via the VEGF autocrine pathway in osteoblastic MC3T3-E1 cells
.
Mol Med Rep
.
2009
Mar-Apr
;
2
(
2
):
229
34
.
[PubMed]
1791-2997
46.
Oryan
A
,
Alidadi
S
,
Moshiri
A
,
Maffulli
N
.
Bone regenerative medicine: classic options, novel strategies, and future directions
.
J Orthop Surg Res
.
2014
Mar
;
9
(
1
):
18
.
[PubMed]
1749-799X
47.
Oryan
A
,
Kamali
A
,
Moshiri
A
,
Baghaban Eslaminejad
M
.
Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence?
Cells Tissues Organs
.
2017
;
204
(
2
):
59
83
.
[PubMed]
1422-6405
48.
Pearson
HB
,
Mason
DE
,
Kegelman
CD
,
Zhao
L
,
Dawahare
JH
,
Kacena
MA
, et al.
Effects of Bone Morphogenetic Protein-2 on Neovascularization During Large Bone Defect Regeneration
.
Tissue Eng Part A
.
2019
Jun
;
ten.tea.2018.0326
.
[PubMed]
1937-3341
49.
Pierson
RN
 3rd
,
Dorling
A
,
Ayares
D
,
Rees
MA
,
Seebach
JD
,
Fishman
JA
, et al.
Current status of xenotransplantation and prospects for clinical application
.
Xenotransplantation
.
2009
Sep-Oct
;
16
(
5
):
263
80
.
[PubMed]
0908-665X
50.
Pina
S
,
Canadas
RF
,
Jiménez
G
,
Perán
M
,
Marchal
JA
,
Reis
RL
, et al.
Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding
.
Cells Tissues Organs
.
2017
;
204
(
3-4
):
150
63
.
[PubMed]
1422-6405
51.
Polo-Corrales
L
,
Latorre-Esteves
M
,
Ramirez-Vick
JE
.
Scaffold design for bone regeneration
.
J Nanosci Nanotechnol
.
2014
Jan
;
14
(
1
):
15
56
.
[PubMed]
1533-4880
52.
Qadir
AS
,
Um
S
,
Lee
H
,
Baek
K
,
Seo
BM
,
Lee
G
, et al.
miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells
.
J Cell Biochem
.
2015
May
;
116
(
5
):
730
42
.
[PubMed]
0730-2312
53.
Reichert
JC
,
Cipitria
A
,
Epari
DR
,
Saifzadeh
S
,
Krishnakanth
P
,
Berner
A
, et al.
A tissue engineering solution for segmental defect regeneration in load-bearing long bones
.
Sci Transl Med
.
2012
Jul
;
4
(
141
):
141ra93
.
[PubMed]
1946-6234
54.
Roddy
,
E.
,
M.R.
DeBaun
,
A.
Daoud-Gray
,
Y.P.
Yang
,
M.J.
Gardner
(
2018
)
Treatment of critical-sized bone defects: clinical and tissue engineering perspectives.
European journal of orthopaedic surgery & traumatology : orthopedie traumatologie 28(3): 351-362.
55.
Saran
U
,
Gemini Piperni
S
,
Chatterjee
S
.
Role of angiogenesis in bone repair
.
Arch Biochem Biophys
.
2014
Nov
;
561
:
109
17
.
[PubMed]
0003-9861
56.
Seyler
,
T.M.
,
D.N.
Bracey
,
J.F.
Plate
,
M.O.
Lively
,
S.
Mannava
,
T.L.
Smith
,
J.M.
Saul
,
G.G.
Poehling
,
M.E.
Van Dyke
,
P.W.
Whitlock
(
2017
)
The Development of a Xenograft-Derived Scaffold for Tendon and Ligament Reconstruction Using a Decellularization and Oxidation Protocol.
Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association 33(2): 374-386.
57.
Shahi
M
,
Nadari
M
,
Sahmani
M
,
Seyedjafari
E
,
Ahmadbeigi
N
,
Peymani
A
.
Osteoconduction of Unrestricted Somatic Stem Cells on an Electrospun Polylactic-Co-Glycolic Acid Scaffold Coated with Nanohydroxyapatite
.
Cells Tissues Organs
.
2018
;
205
(
1
):
9
19
.
[PubMed]
1422-6405
58.
Sharma
S
,
Sapkota
D
,
Xue
Y
,
Rajthala
S
,
Yassin
MA
,
Finne-Wistrand
A
, et al.
Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model
.
Stem Cell Res Ther
.
2018
Jan
;
9
(
1
):
23
.
[PubMed]
1757-6512
59.
Shi
Q
,
Li
Y
,
Sun
J
,
Zhang
H
,
Chen
L
,
Chen
B
, et al.
The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2
.
Biomaterials
.
2012
Oct
;
33
(
28
):
6644
9
.
[PubMed]
0142-9612
60.
Shi
K
,
Lu
J
,
Zhao
Y
,
Wang
L
,
Li
J
,
Qi
B
, et al.
MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix
.
Bone
.
2013
Aug
;
55
(
2
):
487
94
.
[PubMed]
8756-3282
61.
Shuang
Y
,
Yizhen
L
,
Zhang
Y
,
Fujioka-Kobayashi
M
,
Sculean
A
,
Miron
RJ
.
In vitro characterization of an osteoinductive biphasic calcium phosphate in combination with recombinant BMP2
.
BMC Oral Health
.
2016
Aug
;
17
(
1
):
35
.
[PubMed]
1472-6831
62.
Shui
,
W.
,
W.
Zhang
,
L.
Yin
,
G.
Nan
,
Z.
Liao
,
H.
Zhang
,
N.
Wang
,
N.
Wu
,
X.
Chen
,
S.
Wen
,
Y.
He
,
F.
Deng
,
J.
Zhang
,
H.H.
Luu
,
L.L.
Shi
,
Z.
Hu
,
R.C.
Haydon
,
J.
Mok
,
T.C.
He
(
2013
) Characterization of scaffold carriers for BMP9-transduced osteoblastic progenitor cells in bone regeneration. J Biomed Mater Res A.
63.
Smith
CA
,
Board
TN
,
Rooney
P
,
Eagle
MJ
,
Richardson
SM
,
Hoyland
JA
.
Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone
.
PLoS One
.
2017
May
;
12
(
5
):
e0177416
.
[PubMed]
1932-6203
64.
Smith
CA
,
Richardson
SM
,
Eagle
MJ
,
Rooney
P
,
Board
T
,
Hoyland
JA
.
The use of a novel bone allograft wash process to generate a biocompatible, mechanically stable and osteoinductive biological scaffold for use in bone tissue engineering
.
J Tissue Eng Regen Med
.
2015
May
;
9
(
5
):
595
604
.
[PubMed]
1932-6254
65.
Sondag
GR
,
Salihoglu
S
,
Lababidi
SL
,
Crowder
DC
,
Moussa
FM
,
Abdelmagid
SM
, et al.
Osteoactivin Induces Transdifferentiation of C2C12 Myoblasts into Osteoblasts
.
J Cell Physiol
.
2013
.
[PubMed]
0021-9541
66.
Stegen
S
,
van Gastel
N
,
Carmeliet
G
.
Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration
.
Bone
.
2015
Jan
;
70
:
19
27
.
[PubMed]
8756-3282
67.
Stiehler
M
,
Seib
FP
,
Rauh
J
,
Goedecke
A
,
Werner
C
,
Bornhäuser
M
, et al.
Cancellous bone allograft seeded with human mesenchymal stromal cells: a potential good manufacturing practice-grade tool for the regeneration of bone defects
.
Cytotherapy
.
2010
Sep
;
12
(
5
):
658
68
.
[PubMed]
1465-3249
68.
Sun
P
,
Wang
J
,
Zheng
Y
,
Fan
Y
,
Gu
Z
.
BMP2/7 heterodimer is a stronger inducer of bone regeneration in peri-implant bone defects model than BMP2 or BMP7 homodimer
.
Dent Mater J
.
2012
;
31
(
2
):
239
48
.
[PubMed]
0287-4547
69.
Thibault
RA
,
Scott Baggett
L
,
Mikos
AG
,
Kasper
FK
.
Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements
.
Tissue Eng Part A
.
2010
Feb
;
16
(
2
):
431
40
.
[PubMed]
1937-3341
70.
Tokuda
H
,
Adachi
S
,
Matsushima-Nishiwaki
R
,
Kato
K
,
Natsume
H
,
Otsuka
T
, et al.
Enhancement of basic fibroblast growth factor-stimulated VEGF synthesis by Wnt3a in osteoblasts
.
Int J Mol Med
.
2011
Jun
;
27
(
6
):
859
64
.
[PubMed]
1107-3756
71.
Tokuda
H
,
Takai
S
,
Hanai
Y
,
Harada
A
,
Matsushima-Nishiwaki
R
,
Kato
H
, et al.
Potentiation by platelet-derived growth factor-BB of FGF-2-stimulated VEGF release in osteoblasts
.
J Bone Miner Metab
.
2008
;
26
(
4
):
335
41
.
[PubMed]
0914-8779
72.
Vadori
M
,
Cozzi
E
.
The immunological barriers to xenotransplantation
.
Tissue Antigens
.
2015
Oct
;
86
(
4
):
239
53
.
[PubMed]
0001-2815
73.
Wancket
LM
.
Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses
.
Vet Pathol
.
2015
Sep
;
52
(
5
):
842
50
.
[PubMed]
0300-9858
74.
Wang
JH
,
Chen
J
,
Kuo
SM
,
Mitchell
GM
,
Lim
SY
,
Liu
GS
.
Methods for Assessing Scaffold Vascularization In Vivo
.
Methods Mol Biol
.
2019
;
1993
:
217
26
.
[PubMed]
1064-3745
75.
Wanschitz
F
,
Stein
E
,
Sutter
W
,
Kneidinger
D
,
Smolik
K
,
Watzinger
F
, et al.
Expression patterns of Ets2 protein correlate with bone-specific proteins in cell-seeded three-dimensional bone constructs
.
Cells Tissues Organs
.
2007
;
186
(
4
):
213
20
.
[PubMed]
1422-6405
76.
Whitlock
PW
,
Seyler
TM
,
Parks
GD
,
Ornelles
DA
,
Smith
TL
,
Van Dyke
ME
, et al.
A novel process for optimizing musculoskeletal allograft tissue to improve safety, ultrastructural properties, and cell infiltration
.
J Bone Joint Surg Am
.
2012
Aug
;
94
(
16
):
1458
67
.
[PubMed]
0021-9355
77.
Whitlock
PW
,
Smith
TL
,
Poehling
GG
,
Shilt
JS
,
Van Dyke
M
.
A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration
.
Biomaterials
.
2007
Oct
;
28
(
29
):
4321
9
.
[PubMed]
0142-9612
78.
Yang
Q
,
Jian
J
,
Abramson
SB
,
Huang
X
.
Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis
.
J Bone Miner Res
.
2011
Jun
;
26
(
6
):
1188
96
.
[PubMed]
0884-0431
79.
Yu
S
,
Geng
Q
,
Ma
J
,
Sun
F
,
Yu
Y
,
Pan
Q
, et al.
Heparin-binding EGF-like growth factor and miR-1192 exert opposite effect on Runx2-induced osteogenic differentiation
.
Cell Death Dis
.
2013
Oct
;
4
(
10
):
e868
.
[PubMed]
2041-4889
80.
Zheng
ZW
,
Chen
YH
,
Wu
DY
,
Wang
JB
,
Lv
MM
,
Wang
XS
, et al.
Development of an Accurate and Proactive Immunomodulatory Strategy to Improve Bone Substitute Material-Mediated Osteogenesis and Angiogenesis
.
Theranostics
.
2018
Oct
;
8
(
19
):
5482
500
.
[PubMed]
1838-7640
81.
Zheng
Y
,
Wang
L
,
Zhang
X
,
Zhang
X
,
Gu
Z
,
Wu
G
.
BMP2/7 heterodimer can modulate all cellular events of the in vitro RANKL-mediated osteoclastogenesis, respectively, in different dose patterns
.
Tissue Eng Part A
.
2012
Mar
;
18
(
5-6
):
621
30
.
[PubMed]
1937-3341
82.
Zhu
,
W.
,
B.A.
Rawlins
,
O.
Boachie-Adjei
,
E.R.
Myers
,
J.
Arimizu
,
E.
Choi
,
J.R.
Lieberman
,
R.G.
Crystal
,
C.
Hidaka
(
2004
) Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 19(12): 2021-2032.
83.
Zimmermann
G
,
Moghaddam
A
.
Allograft bone matrix versus synthetic bone graft substitutes
.
Injury
.
2011
Sep
;
42
Suppl 2
:
S16
21
.
[PubMed]
0020-1383
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.