Oxygen is a vital source of energy necessary to sustain and complete embryonic development. Not only is oxygen the driving force for many cellular functions and metabolism, but it is also involved in regulating stem cell fate, morphogenesis, and organogenesis. Low oxygen levels are the naturally preferred microenvironment for most processes during early development and mainly drive proliferation. Later on, more oxygen and also nutrients are needed for organogenesis and morphogenesis. Therefore, it is critical to maintain oxygen levels within a narrow range as required during development. Modulating oxygen tensions is performed via oxygen homeostasis mainly through the function of hypoxia-inducible factors. Through the function of these factors, oxygen levels are sensed and regulated in different tissues, starting from their embryonic state to adult development. To be able to mimic this process in a tissue engineering setting, it is important to understand the role and levels of oxygen in each developmental stage, from embryonic stem cell differentiation to organogenesis and morphogenesis. Taking lessons from native tissue microenvironments, researchers have explored approaches to control oxygen tensions such as hemoglobin-based, perfluorocarbon-based, and oxygen-generating biomaterials, within synthetic tissue engineering scaffolds and organoids, with the aim of overcoming insufficient or nonuniform oxygen levels and nutrient supply.

1.
Abdollahi, H., L.J. Harris, P. Zhang, S. McIlhenny, V. Srinivas, T. Tulenko, P.J. DiMuzio (2011) The role of hypoxia in stem cell differentiation and therapeutics. J Surg Res 165: 112–117.
2.
Akkerman, N., L.H. Defize (2017) Dawn of the organoid era: 3D tissue and organ cultures revolutionize the study of development, disease, and regeneration. Bioessays DOI: 10.1002/bies.201600244.
3.
Akula, S., I.K. Brosch, N.D. Leipzig (2017) Fluorinated methacrylamide chitosan hydrogels enhance cellular wound healing processes. Ann Biomed Eng 45: 2693–2702.
4.
Anada, T., J. Fukuda, Y. Sai, O. Suzuki (2012) An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids. Biomaterials 33: 8430–8441.
5.
Araldi, E., E. Schipani (2010) Hypoxia, HIFs and bone development. Bone 47: 190–196.
6.
Armstrong, J.P.K., R. Shakur, J.P. Horne, S.C. Dickinson, C.T. Armstrong, K. Lau, et al. (2015) Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue. Nat Commun 6: 7405.
7.
Aydogdu, O., B. Burgu, P.U. Gocun, E. Ozden, O. Yaman, T. Soygur, et al. (2012) Near infrared spectroscopy to diagnose experimental testicular torsion: comparison with Doppler ultrasound and immunohistochemical correlation of tissue oxygenation and viability. J Urol 187: 744–750.
8.
Baptista, P.M., M.M. Siddiqui, G. Lozier, S.R. Rodriguez, A. Atala, S. Soker (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53: 604–617.
9.
Barinaga, M. (ed) (1997) Neuroscience: What Makes Brain Neurons Run? New York, American Association for the Advancement of Science, p 196.
10.
Benz, S., S. Nötzli, J.S. Siegel, D. Eberli, H.J. Jessen (2013) Controlled oxygen release from pyridone endoperoxides promotes cell survival under anoxic conditions. J Med Chem 56: 10171–10182.
11.
Bian, Y., T.M.S. Chang (2015) A novel nano-biotherapeutic poly-(hemoglobin-superoxide dismutase-catalase-carbonic anhydrase) with no cardiac toxicity for the resuscitation of a rat model with 90 min of sustained severe hemorrhagic shock with loss of 2/3 blood volume. Artif Cells Nanomed Biotechnol 43: 1–9.
12.
Bianconi, A., A. Congiu-Castellano, M. Dell’ Ariccia, A. Giovannelli, E. Burattini, P.J. Durham (1985) Increase of the Fe effective charge in hemoproteins during oxygenation process. Biochem Biophys Res Commun 131: 98–102.
13.
Boushel, R., H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bulow, M. Kjaer (2001) Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11: 213–222.
14.
Boveris, A., L.E. Costa, E. Cadenas, J.J. Poderoso (1999) Regulation of mitochondrial respiration by adenosine diphosphate, oxygen, and nitric oxide. Methods Enzymol 301: 188–198.
15.
Bryant, J.D., M.C. Brown, M.I. Dobrikov, E.Y. Dobrikova, S.L. Gemberling, Q. Zhang, M. Gromeier (2018) Regulation of HIF-1α during hypoxia by DAP5-induced translation of PHD2. Mol Cell Biol 38: e00647–17.
16.
Buehler, P.W., F. D’Agnillo, D.J. Schaer (2010) Hemoglobin-based oxygen carriers: from mechanisms of toxicity and clearance to rational drug design. Trends Mol Med 16: 447–457.
17.
Bunn, H.F., W.T. Esham, R.W. Bull (1969) The renal handling of hemoglobin. I. Glomerular filtration. J Exp Med 129: 909–924.
18.
Camci-Unal, G., N. Alemdar, N. Annabi, A. Khademhosseini (2013) Oxygen-releasing biomaterials for tissue engineering. Polym Int 62: 843–848.
19.
Canfield, D.E. (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33: 1–36.
20.
Carreau, A., B.E. Hafny-Rahbi, A. Matejuk, C. Grillon, C. Kieda (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15: 1239–1253.
21.
Cerutti, C., A.J. Ridley (2017) Endothelial cell-cell adhesion and signaling. Exp Cell Res 358: 31–38.
22.
Chan, P.H., J.W. Schmidley, R.A. Fishman, S.M. Longar (1984) Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34: 315–320.
23.
Chavez, M.N., T.L. Schenck, U. Hopfner, C. Centeno-Cerdas, I. Somlai-Schweiger, C. Schwarz, et al. (2016) Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration. Biomaterials 75: 25–36.
24.
Chen, F.-M., X. Liu (2016) Advancing biomaterials of human origin for tissue engineering. Progr Polym Sci 53: 86–168.
25.
Chen, Z., M. Zhao, K. Liu, Y. Wan, X. Li, G. Feng (2014) Novel chitosan hydrogel formed by ethylene glycol chitosan, 1,6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold: in vitro and in vivo evaluation. J Mater Sci Mater Med 25: 1903–1913.
26.
Chromiak, J.A., J. Shansky, C. Perrone, H.H. Vandenburgh (1998) Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids. In Vitro Cell Dev Biol Anim 34: 694–703.
27.
Chubb, C. (1985) Reversal of the endocrine tox-icity of commercially produced perfluorochemical emulsion. Biol Reprod 33: 854–858.
28.
Clarke, L., D. van der Kooy (2009) Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells 27: 1879–1886.
29.
Cook, C.A., K.C. Hahn, J.B.F. Morrissette-McAlmon, W.L. Grayson (2015) Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments. Biomaterials 52: 376–384.
30.
Cooke, J. (1975) Control of somite number during morphogenesis of a vertebrate, Xenopus laevis. Nature 254: 196–199.
31.
Coronel, M.M., R. Geusz, C.L. Stabler (2017) Mitigating hypoxic stress on pancreatic islets via in situ oxygen generating biomaterial. Biomaterials 129: 139–151.
32.
Cross, M.J., J. Dixelius, T. Matsumoto, L. Claesson-Welsh (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28: 488–494.
33.
Davenport, J.J., M. Hickey, J.P. Phillips, P.A. Kyriacou (2016) Fiber-optic fluorescence-quenching oxygen partial pressure sensor using platinum octaethylporphyrin. Appl Opt 55: 5603–5609.
34.
De Caterina, R., P. Libby, H.B. Peng, V.J. Thannickal, T.B. Rajavashisth, M.A. Gimbrone Jr., et al. (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96: 60–68.
35.
De Santis, V., M. Singer (2015) Tissue oxygen tension monitoring of organ perfusion: rationale, methodologies, and literature review. Br J Anaesth 115: 357–365.
36.
Deng, W., X. Feng, X. Li, D. Wang, L. Sun (2016) Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol 303: 7–15.
37.
DiStefano, T., H.Y. Chen, C. Panebianco, K.D. Kaya, M.J. Brooks, L. Gieser, et al. (2018) Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Rep 10: 300–313.
38.
Dunwoodie, S.L. (2009) The role of hypoxia in development of the mammalian embryo. Dev Cell 17: 755–773.
39.
Edwards, S.W., M.B. Hallett, A.K. Campbell (1984) Oxygen-radical production during inflammation may be limited by oxygen concentration. Biochem J 217: 851–854.
40.
Eisenbrey, J.R., L. Albala, M.R. Kramer, N. Daroshefski, D. Brown, J.B. Liu, et al. (2015) Development of an ultrasound sensitive oxygen carrier for oxygen delivery to hypoxic tissue. Int J Pharm 478: 361–367.
41.
Enders, A.C., B.F. King (1991) Early stages of trophoblastic invasion of the maternal vascular system during implantation in the macaque and baboon. Am J Anat 192: 329–346.
42.
Endeward, V., G. Gros, K.D. Jürgens (2010) Significance of myoglobin as an oxygen store and oxygen transporter in the intermittently perfused human heart: a model study. Cardiovasc Res 87: 22–29.
43.
Espes, D., J. Lau, U. Banerjee, A.F. Palmer, P.-O. Carlsson (2015) Cotransplantation of polymerized hemoglobin reduces β-cell hypoxia and improves β-cell function in intramuscular islet grafts. Transplantation 99: 2077–2082.
44.
Evans, S.M., S. Hahn, D.R. Pook, W.T. Jenkins, A.A. Chalian, P. Zhang, et al. (2000) Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res 60: 2018–2024.
45.
Evans, S.M., K.D. Judy, I. Dunphy, W.T. Jenkins, P.T. Nelson, R. Collins, et al. (2004) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64: 1886–1892.
46.
Ezashi, T., P. Das, R.M. Roberts (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102: 4783–4788.
47.
Faller, D.V. (1999) Endothelial cell responses to hypoxic stress. Clin Exp Pharmacol Physiol 26: 74–84.
48.
Fang, Y., R.M. Eglen (2017) Three-dimensional cell cultures in drug discovery and development. SLAS Discov 22: 456–472.
49.
Farris, A.L., A.N. Rindone, W.L. Grayson (2016) Oxygen delivering biomaterials for tissue engineering. J Mater Chem B 4: 3422–3432.
50.
Fennema, E., N. Rivron, J. Rouwkema, C. van Blitterswijk, J. de Boer (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31: 108–115.
51.
Fisher, S.A., W.W. Burggren (2007) Role of hypoxia in the evolution and development of the cardiovascular system. Antioxid Redox Signal 9: 1339–1352.
52.
Fitzgerald, R.S., M. Shirahata, H.Y. Wang (1999) Acetylcholine release from cat carotid bodies. Brain Res 841: 53–61.
53.
Fraisl, P., M. Mazzone, T. Schmidt, P. Carmeliet (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16: 167–179.
54.
Frankenberg, S.R., F.R. de Barros, J. Rossant, M.B. Renfree (2016) The mammalian blastocyst. Wiley Interdiscip Rev Dev Biol 5: 210–232.
55.
Gattas-Asfura, K.M., C.A. Fraker, C.L. Stabler (2012) Perfluorinated alginate for cellular encapsulation. J Biomed Mater Res A 100: 1963–1971.
56.
Genbacev, O., Y. Zhou, J.W. Ludlow, S.J. Fisher (1997) Regulation of human placental development by oxygen tension. Science 277: 1669–1672.
57.
Geyer, R.P. (1988) Perfluorochemicals as oxygen transport vehicles. Biomater Artif Cells Artif Organs 16: 31–49.
58.
Gholipourmalekabadi, M., S. Zhao, B.S. Harrison, M. Mozafari, A.M. Seifalian (2016) Oxygen-generating biomaterials: a new, viable paradigm for tissue engineering? Trends Biotechnol 34: 1010–1021.
59.
Giussani, D.A., C.E. Salinas, M. Villena, C.E. Blanco (2007) The role of oxygen in prenatal growth: studies in the chick embryo. J Physiol 585: 911–917.
60.
Goh, F., J.D. Gross, N.E. Simpson, A. Sambanis (2010) Limited beneficial effects of perfluorocarbon emulsions on encapsulated cells in culture: experimental and modeling studies. J Biotechnol 150: 232–239.
61.
Graham, A.M., J.S. Presnell (2017) Hypoxia inducible factor (HIF) transcription factor family expansion, diversification, divergence and selection in eukaryotes. PLoS One 12: e0179545.
62.
Griffith, L.G., G. Naughton (2002) Tissue engineering – current challenges and expanding opportunities. Science 295: 1009–1014.
63.
Guzy, R.D., B. Hoyos, E. Robin, H. Chen, L. Liu, K.D. Mansfield, et al. (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabol 1: 401–408.
64.
Halliwell, B., J.M. Gutteridge (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1–14.
65.
Harrison, B.S., D. Eberli, S.J. Lee, A. Atala, J.J. Yoo (2007) Oxygen producing biomaterials for tissue regeneration. Biomaterials 28: 4628–4634.
66.
Harrison, H.E., H. Bunting, N.K. Ordway, W.S. Albrink (1947) The pathogenesis of the renal injury produced in the dog by hemoglobin or methemoglobin. J Exp Med 86: 339–356.
67.
Harvey, A.J., K.L. Kind, M. Pantaleon, D.T. Armstrong, J.G. Thompson (2004) Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod 71: 1108–1119.
68.
Hathazi, D., A.C. Mot, A. Vaida, F. Scurtu, I. Lupan, E. Fischer-Fodor, et al. (2014) Oxidative protection of hemoglobin and hemerythrin by cross-linking with a nonheme iron peroxidase: potentially improved oxygen carriers for use in blood substitutes. Biomacromolecules 15: 1920–1927.
69.
Hemker, S.L., S. Sims-Lucas, J. Ho (2016) Role of hypoxia during nephrogenesis. Pediatr Nephrol 31: 1571–1577.
70.
Hu, J.L., M.E. Todhunter, M.A. LaBarge, Z.J. Gartner (2018) Opportunities for organoids as new models of aging. J Cell Biol 217: 39–50.
71.
Huang, C.-C., W.-T. Chia, M.-F. Chung, K.-J. Lin, C.-W. Hsiao, C. Jin, et al. (2016) An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J Am Chem Soc 138: 5222–5225.
72.
Hutton, D.L., W.L. Grayson (2016) Hypoxia inhibits de novo vascular assembly of adipose-derived stromal/stem cell populations but promotes growth of preformed vessels. Tissue Eng Part A 22: 161–169.
73.
Ingber, D.E., V.C. Mow, D. Butler, L. Niklason, J. Huard, J. Mao, et al. (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12: 3265–3283.
74.
Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, et al. (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468.
75.
Jaenisch, R., N. Dubois, J.E. Rasko, H. Deng, A.S. Alvarado, E. Fuchs, et al. (2018) Challenging stem cells. Cell 173: 1063–1065.
76.
Jensen, F.B., A. Fago, R.E. Weber (1998) Hemoglobin structure and function. Fish Physiol 17: 1–40.
77.
Kamoya, T., T. Anada, Y. Shiwaku, T. Takano-Yamamoto, O. Suzuki (2016) An oxygen-permeable spheroid culture chip (Oxy chip) promotes osteoblastic differentiation of mesenchymal stem cells. Sens Actuators B Chem 232: 75–83.
78.
Kao, I., Y. Xiong, A. Steffen, K. Smuda, L. Zhao, R. Georgieva, et al. (2018) Preclinical in vitro safety investigations of submicron sized hemoglobin based oxygen carrier HbMP-700. Artif Organs 42: 549–559.
79.
Kelava, I., M.A. Lancaster (2016) Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev Biol 420: 199–209.
80.
Khattak, S.F., K.S. Chin, S.R. Bhatia, S.C. Roberts (2007) Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng 96: 156–166.
81.
Kim, S.S., R. Penkala, P. Abrahimi (2007) A perfusion bioreactor for intestinal tissue engineering. J Surg Res 142: 327–331.
82.
Koch, C.J. (2002) Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5. Methods Enzymol 352: 3–31.
83.
Krock, B.L., N. Skuli, M.C. Simon (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2: 1117–1133.
84.
Kumar, S., U. Bandyopadhyay (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157: 175–188.
85.
Lai, Y.-T., M. Sato, S. Ohta, K. Akamatsu, S.-I. Nakao, Y. Sakai, T. Ito (2015) Preparation of uniform-sized hemoglobin-albumin microspheres as oxygen carriers by Shirasu porous glass membrane emulsification technique. Colloids Surf B Biointerfaces 127: 1–7.
86.
Laschke, M.W., Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring, et al. (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12: 2093–2104.
87.
Laschke, M.W., M.D. Menger (2017) Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol 35: 133–144.
88.
Lazzari, G., P. Couvreur, S. Mura (2017) Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 8: 4947–4969.
89.
Le Pape, F., G. Richard, E. Porchet, S. Sourice, F. Dubrana, C. Férec, et al. (2018) Adhesion, proliferation and osteogenic differentiation of human MSCs cultured under perfusion with a marine oxygen carrier on an allogenic bone substitute. Artif Cells Nanomed Biotechnol 46: 95–107.
90.
Lee, H.-Y., H.-W. Kim, J.H. Lee, S.H. Oh (2015) Controlling oxygen release from hollow microparticles for prolonged cell survival under hypoxic environment. Biomaterials 53: 583–591.
91.
Li, H., A. Wijekoon, N.D. Leipzig (2014) Encapsulated neural stem cell neuronal differentiation in fluorinated methacrylamide chitosan hydrogels. Ann Biomed Engi 42: 1456–1469.
92.
Li, Z., X. Guo, J. Guan (2012) An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials 33: 5914–5923.
93.
Lin, G., R.L. Macdonald, L.S. Marton, A. Kowalczuk, N.J. Solenski, B.K. Weir (2001) Hemoglobin increases endothelin-1 in endothelial cells by decreasing nitric oxide. Biochem Biophys Res Commun 280: 824–830.
94.
Liu, S., S.J. Shah, L.J. Wilmes, J. Feiner, V.D. Kodibagkar, M.F. Wendland, et al. (2011) Quantitative tissue oxygen measurement in multiple organs using 19F MRI in a rat model. Magn Reson Med 66: 1722–1730.
95.
Lode, A., F. Krujatz, S. Brüggemeier, M. Quade, K. Schütz, S. Knaack, et al. (2015) Green bioprinting: fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications. Eng Life Sci 15: 177–183.
96.
Logsdon, E.A., S.D. Finley, A.S. Popel, F.M. Gabhann (2014) A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 18: 1491–1508.
97.
Lou, Y.R., A.W. Leung (2018) Next generation organoids for biomedical research and applications. Biotechnol Adv 36: 132–149.
98.
Lourens, A., H. van den Brand, M.J. Heetkamp, R. Meijerhof, B. Kemp (2007) Effects of eggshell temperature and oxygen concentration on embryo growth and metabolism during incubation. Poultry Sci 86: 2194–2199.
99.
Lovett, M., K. Lee, A. Edwards, D.L. Kaplan (2009) vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15: 353–370.
100.
Lowe, K.C., M.R. Davey, J.B. Power (1998) Perfluorochemicals: their applications and benefits to cell culture. Trends Biotechnol 16: 272–277.
101.
Lutolf, M.P., J.A. Hubbell (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23: 47–55.
102.
Lv, X., Z. Li, S. Chen, M. Xie, J. Huang, X. Peng, et al. (2016) Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering. Biomaterials 84: 99–110.
103.
Maidhof, R., N. Tandon, E.J. Lee, J. Luo, Y. Duan, K. Yeager, et al. (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6: e12–e23.
104.
Maio, A., R. Scaffaro, L. Lentini, A. Palumbo Piccionello, I. Pibiri (2018) Perfluorocarbons-graphene oxide nanoplatforms as biocompatible oxygen reservoirs. Chem Eng J 334: 54–65.
105.
Maltepe, E., O.D. Saugstad (2009) Oxygen in health and disease: regulation of oxygen homeostasis – clinical implications. Pediatr Res 65: 261–268.
106.
Maltepe, E., J.V. Schmidt, D. Baunoch, C.A. Bradfield, M.C. Simon (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386: 403–407.
107.
Metcalfe, J., I.E. McCutcheon, D.L. Francisco, A.B. Metzenberg, J.E. Welch (1981) Oxygen availability and growth of the chick embryo. Respir Physiol 46: 81–88.
108.
Michiels, C. (2004) Physiological and pathological responses to hypoxia. Am J Pathol 164: 1875–1882.
109.
Mironov, V., R.P. Visconti, V. Kasyanov, G. Forgacs, C.J. Drake, R.R. Markwald (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30: 2164–2174.
110.
Mohyeldin, A., T. Garzon-Muvdi, A. Quinones-Hinojosa (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7: 150–161.
111.
Moore, M., R. Moore, P.S. McFetridge (2013) Directed oxygen gradients initiate a robust early remodeling response in engineered vascular grafts. Tissue Eng Part A 19: 2005–2013.
112.
Murphy, K.C., B.P. Hung, S. Browne-Bourne, D. Zhou, J. Yeung, D.C. Genetos, J.K. Leach (2017) Measurement of oxygen tension within mesenchymal stem cell spheroids. J R Soc Interface 14: 127.
113.
Mutluoglu, M., A. Cakkalkurt, G. Uzun, S. Aktas (2013) Topical oxygen for chronic wounds: a pro/con debate. J Am Coll Clin Wound Spec 5: 61–65.
114.
Narva, E., J.P. Pursiheimo, A. Laiho, N. Rahkonen, M.R. Emani, M. Viitala, et al. (2013) Continuous hypoxic culturing of human embryonic stem cells enhances SSEA-3 and MYC levels. PLoS One 8: e78847.
115.
Natanson, C., S.J. Kern, P. Lurie, S.M. Banks, S.M. Wolfe (2008) Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA 299: 2304–2312.
116.
New, D.A., P.T. Coppola (1970) Effects of different oxygen concentrations on the development of rat embryos in culture. J Reprod Fertil 21: 109–118.
117.
Nordsmark, M., J. Loncaster, C. Aquino-Parsons, S.-C. Chou, M. Ladekarl, H. Havsteen, et al. (2003) Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother Oncol 67: 35–44.
118.
O’Brien, F.J. (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14: 88–95.
119.
Oh, S.H., C.L. Ward, A. Atala, J.J. Yoo, B.S. Harrison (2009) Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials 30: 757–762.
120.
Ortega, J.A., C.L. Sirois, F. Memi, N. Glidden, N. Zecevic (2017) Oxygen levels regulate the development of human cortical radial glia cells. Cereb Cortex 27: 3736–3751.
121.
Ott, H.C., B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, et al. (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16: 927–933.
122.
Palumbo, F.S., M. Di Stefano, A. Palumbo Piccionello, C. Fiorica, G. Pitarresi, I. Pibiri, et al. (2014) Perfluorocarbon functionalized hyaluronic acid derivatives as oxygenating systems for cell culture. RSC Adv 4: 22894–22901.
123.
Papkovsky, D.B., R.I. Dmitriev (2018) Imaging of oxygen and hypoxia in cell and tissue samples. Cell Mol Life Sci DOI: 10.1007/s00018-018-2840-x.
124.
Park, J., J.H. Chang, M. Choi, J.J. Pak, D.Y. Lee, Y.K. Pak (2007) A study on the microfabricated Clark-type sensor for measuring dissolved oxygen. Transact Korean Institute Electr Eng 56: 1450–1453.
125.
Parks, D.A., A.K. Shah, D.N. Granger (1984) Oxygen radicals: effects on intestinal vascular permeability. Am J Physiol 247: G167–G170.
126.
Parveen, S., K. Krishnakumar, S.K. Sahoo (2006) New era in health care: tissue engineering. J Stem Cells Regen Med 1: 8–24.
127.
Patel, V., I.V. Chivukula, S. Roy, S. Khanna, G. He, N. Ojha, et al. (2005) Oxygen: from the benefits of inducing VEGF expression to managing the risk of hyperbaric stress. Antioxid Redox Signal 7: 1377–1387.
128.
Patil, P.S., N. Fountas-Davis, H. Huang, M. Michelle Evancho-Chapman, J.A. Fulton, L.P. Shriver, N.D. Leipzig (2016) Fluorinated methacrylamide chitosan hydrogels enhance collagen synthesis in wound healing through increased oxygen availability. Acta Biomater 36: 164–174.
129.
Pedraza, E., M.M. Coronel, C.A. Fraker, C. Ricordi, C.L. Stabler (2012) Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci USA 109: 4245–4250.
130.
Pin, S., B. Alpert, A. Michalowicz (1982) An investigation by iron K-edge spectroscopy of the oxidation state of iron in hemoglobin and its subunits. FEBS Lett 147: 106–110.
131.
Pishchany, G., A.L. McCoy, V.J. Torres, J.C. Krause, J.E. Crowe Jr., M.E. Fabry, et al. (2010) Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe 8: 544–550.
132.
Podar, K., K.C. Anderson (2010) A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle 9: 1722–1728.
133.
Powers, M.J., K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, et al. (2002) A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 78: 257–269.
134.
Presley, T., P. Kuppusamy, J.L. Zweier, G. Ilangovan (2006) Electron paramagnetic resonance oximetry as a quantitative method to measure cellular respiration: a consideration of oxygen diffusion interference. Biophys J 91: 4623–4631.
135.
Pugh, C.W., P.J. Ratcliffe (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9: 677–684.
136.
Pugsley, M.K., R. Tabrizchi (2000) The vascular system: an overview of structure and function. J Pharmacol Toxicol Methods 44: 333–340.
137.
Qian, X., F. Jacob, M.M. Song, H.N. Nguyen, H. Song, G.L. Ming (2018) Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 13: 565–580.
138.
Qian, X., H.N. Nguyen, M.M. Song, C. Hadiono, S.C. Ogden, C. Hammack, et al. (2016) Brain region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165: 1238–1254.
139.
Radisic, M., H. Park, F. Chen, J.E. Salazar-Lazzaro, Y. Wang, R. Dennis, et al. (2006) Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng 12: 2077–2091.
140.
Rankin, E.B., A.J. Giaccia, E. Schipani (2011) A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep 9: 46–52.
141.
Ravichandran, R., V. Seitz, J.R. Venugopal, R. Sridhar, S. Sundarrajan, S. Mukherjee, et al. (2013) Mimicking native extracellular matrix with phytic acid-crosslinked protein nanofibers for cardiac tissue engineering. Macromol Biosci 13: 366–375.
142.
Reddi, A.H. (2014) Morphogenesis and tissue engineering; in R. Lanza, R. Langer, J. Vacanti (eds): Principles of Tissue Engineering, chapt 11, ed 4. Boston, Academic Press, pp 209–223.
143.
Rodriguez-Brotons, A., W. Bietiger, C. Peronet, A. Langlois, J. Magisson, C. Mura, et al. (2016) Comparison of perfluorodecalin and HEMOXCell as oxygen carriers for islet oxygenation in an in vitro model of encapsulation. Tissue Eng Part A 22: 1327–1336.
144.
Romagnoli, S., G. Zagli, Z. Ricci (2015) Diaspirin Cross-Linked Hemoglobin and Blood Substitutes: Reducing Mortality in Critically Ill Patients. Springer, pp 83–91.
145.
Rother, R.P., L. Bell, P. Hillmen, M.T. Gladwin (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293: 1653–1662.
146.
Rouwkema, J., A. Khademhosseini (2016) Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends Biotechnol 34: 733–745.
147.
Ruiz-Cabello, J., B.P. Barnett, P.A. Bottomley, J.W.M. Bulte (2011) Fluorine ([19]F) MRS and MRI in biomedicine. NMR Biomed 24: 114–129.
148.
Sakai, H. (2017) Overview of potential clinical applications of hemoglobin vesicles (HbV) as artificial red cells, evidenced by preclinical studies of the Academic Research Consortium. J Funct Biomater 8: 10.
149.
Santiesteban, D.Y., K. Kubelick, K.S. Dhada, D. Dumani, L. Suggs, S. Emelianov (2016) Monitoring/imaging and regenerative agents for enhancing tissue engineering characterization and therapies. Ann Biomed Eng 44: 750–772.
150.
Scheeren, T.W.L., P. Schober, L.A. Schwarte (2012) Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput 26: 279–287.
151.
Schenck, T.L., U. Hopfner, M.N. Chavez, H.G. Machens, I. Somlai-Schweiger, R.E. Giunta, et al. (2015) Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering. Acta Biomater 15: 39–47.
152.
Schipani, E., C. Maes, G. Carmeliet, G.L. Semenza (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Min Res 24: 1347–1353.
153.
Schrey, A., T. Niemi, I. Kinnunen, H. Minn, T. Vahlberg, K. Kalliokoski, et al. (2010) The limitations of tissue-oxygen measurement and positron emission tomography as additional methods for postoperative breast reconstruction free-flap monitoring. J Plast Reconstr Aesthet Surg 63: 314–321.
154.
Semenza, G.L. (2010) Oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med 2: 336–361.
155.
Serex, T., S. Anand, S. Munley, E.M. Donner, S.R. Frame, R.C. Buck, S.E. Loveless (2014) Toxicological evaluation of 6: 2 fluorotelomer alcohol. Toxicology 319: 1–9.
156.
Shahbazi, M.N., A. Jedrusik, S. Vuoristo, G. Recher, A. Hupalowska, V. Bolton, et al. (2016) Self-organisation of the human embryo in the absence of maternal tissues. Nat Cell Biol 18: 700–708.
157.
Shao, Y., F.-Q. Zhao (2014) Emerging evidence of the physiological role of hypoxia in mammary development and lactation. J Anim Sci Biotechnol 5: 9.
158.
Simon, M.C., B. Keith (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9: 285–296.
159.
Song, G., C. Ji, C. Liang, X. Song, X. Yi, Z. Dong, et al. (2017) TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. Biomaterials 112: 257–263.
160.
Spahn, D.R. (2000) Current status of artificial oxygen carriers. Adv Drug Deliver Rev 40: 143–151.
161.
Stamati, K., V. Mudera, U. Cheema (2011) Evolution of oxygen utilization in multicellular organisms and implications for cell signal ling in tissue engineering. J Tissue Eng 2: 2041731411432365.
162.
Steg, H., A.T. Buizer, W. Woudstra, A.G. Veldhuizen, S.K. Bulstra, D.W. Grijpma, et al. (2017) Oxygen-releasing poly(trimethylene carbonate) microspheres for tissue engineering applications. Polymr Adv Technol 28: 1252–1257.
163.
Stoppel, W.L., S.C. Roberts (2012) Oxygen supply for tissue engineering; in: Engineering Biomaterials for Regenerative Medicine. Springer, pp 41–86.
164.
Takahashi, M., S. Ishida, M. Hirata-Koizumi, A. Ono, A. Hirose (2014) Repeated dose and reproductive/developmental toxicity of perfluoroundecanoic acid in rats. J Toxicol Sci 39: 97–108.
165.
Terraneo, L., P. Bianciardi, A. Malavalli, G. Mkrtchyan, S.N. Spann, J. Lohman, et al. (2017) Hemoglobin extravasation in the brain of rats exchange-transfused with hemoglobin-based oxygen carriers. Artif Cells Nanomed Biotechnol 45: 710–716.
166.
Tuderman, L., R. Myllyla, K.I. Kivirikko (1977) Mechanism of the prolyl hydroxylase reaction. FEBS J 80: 341–348.
167.
Uno, K., C.A. Merges, R. Grebe, G.A. Lutty, T.W. Prow (2007) Hyperoxia inhibits several critical aspects of vascular development. Dev Dyn 236: 981–990.
168.
Van Tuyl, M., J. Liu, J. Wang, M. Kuliszewski, D. Tibboel, M. Post (2005) Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung. Am J Physiol Lung Cell Mol Physiol 288: L167–L178.
169.
van Wetering, S., J.D. van Buul, S. Quik, F.P. Mul, E.C. Anthony, J.P. ten Klooster, et al. (2002) Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci 115: 1837–1846.
170.
Varia, M.A., D.P. Calkins-Adams, L.H. Rinker, A.S. Kennedy, D.B. Novotny, W.C. Fowler, J.A. Raleigh (1998) Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol Oncol 71: 270–277.
171.
Varnado, C.L., T.L. Mollan, I. Birukou, B.J. Smith, D.P. Henderson, J.S. Olson (2013) Development of recombinant hemoglobin-based oxygen carriers. Antioxid Redox Signal 18: 2314–2328.
172.
Veen, T., J.A. Hunt (2015) Tissue engineering red blood cells: a therapeutic. J Tissue Eng Regen Med 9: 760–770.
173.
Wang, J., Y. Zhu, H.K. Bawa, G. Ng, Y. Wu, M. Libera, et al. (2011) Oxygen-generating nanofiber cell scaffolds with antimicrobial properties. ACS Appl Mater Interfaces 3: 67–73.
174.
Wang, Q., R. Zhang, M. Lu, G. You, Y. Wang, G. Chen, et al. (2017) Bioinspired polydopamine-coated hemoglobin as potential oxygen carrier with antioxidant properties. Biomacromolecules 18: 1333–1341.
175.
Wang, Y., S. Zhao (eds) (2010) Cell types of the placenta; in: Vascular Biology of the Placenta, chapt 4. San Rafael, Morgan and Claypool Life Sciences.
176.
Ward, C.L., B.T. Corona, J.J. Yoo, B.S. Harrison, G.J. Christ (2013) Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PLoS One 8: e72485.
177.
Waxman, K. (1986) Perfluorocarbons as blood substitutes. Ann Emerg Med 15: 1423–1424.
178.
Weyand, B., M. Nohre, E. Schmalzlin, M. Stolz, M. Israelowitz, C. Gille, et al. (2015) Noninvasive oxygen monitoring in three-dimensional tissue cultures under static and dynamic culture conditions. Biores Open Access 4: 266–277.
179.
Wijekoon, A., N. Fountas-Davis, N.D. Leipzig (2013) Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater 9: 5653–5664.
180.
Xie, Y., J. Zhang, Y. Lin, X. Gaeta, X. Meng, D.R. Wisidagama, et al. (2014) Defining the role of oxygen tension in human neural progenitor fate. Stem Cell Rep 3: 743–757.
181.
Xinaris, C., V. Brizi, G. Remuzzi (2015) Organoid models and applications in biomedical research. Nephron 130: 191–199.
182.
Yoon, A.P., N.F. Jones (2016) Critical time for neovascularization/angiogenesis to allow free flap survival after delayed postoperative anastomotic compromise without surgical intervention: a review of the literature. Microsurgery 36: 604–612.
183.
Zhang, Y.S., A. Arneri, S. Bersini, S.R. Shin, K. Zhu, Z. Goli-Malekabadi, et al. (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110: 45–59.
184.
Zhang, Y.S., K. Yue, J. Aleman, K.M. Moghaddam, S.M. Bakht, J. Yang, et al. (2017) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45: 148–163.
185.
Zimna, A., M. Kurpisz (2015) Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int 2015: 549412.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.