One of the most profound advances in the last decade of biomedical research has been the development of human induced pluripotent stem cell (hiPSC) models for identification of disease mechanisms and drug discovery. Human iPSC technology has the capacity to revolutionize healthcare and the realization of personalized medicine, but differentiated tissues derived from stem cells come with major criticisms compared to native tissue, including variability in genetic backgrounds, a lack of functional maturity, and differences in epigenetic profiles. It is widely believed that increasing complexity will lead to improved clinical relevance, so methods are being developed that go from a single cell type to various levels of 2-D coculturing and 3-D organoids. As this inevitable trend continues, it will be essential to thoroughly understand the strengths and weaknesses of more complex models and to develop criteria for assessing biological relevance. We believe the payoff of robust, high-throughput, clinically meaningful human stem cell models could be the elimination of often inadequate animal models. To facilitate this transition, we will look at the challenges and strategies of complex model development through the lens of neurodegeneration to encapsulate where the disease-in-a-dish field currently is and where it needs to go to improve.

1.
Ambasudhan, R., M. Talantova, R. Coleman, X. Yuan, S. Zhu, S.A. Lipton, et al. (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9: 113–118.
2.
Andrew, S.E., Y.P. Goldberg, B. Kremer, H. Telenius, J. Theilmann, S. Adam, et al. (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4: 398–403.
3.
Ban, J., P. Bonifazi, G. Pinato, F.D. Broccard, L. Studer, V. Torre, et al. (2006) Embryonic stem cell-derived neurons form functional networks in vitro. Stem Cells 25: 738–749.
4.
Bar-Nur, O., H.A. Russ, S. Efrat, N. Benvenisty (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9: 17–23.
5.
Becker, J.S., D. Nicetto, K.S. Zaret (2016) H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet 32: 29–41.
6.
Bekris, L.M., C.-E. Yu, T.D. Bird, D.W. Tsuang (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23: 213–227.
7.
Benayoun, B.A., E.A. Pollina, A. Brunet (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16: 593–610.
8.
Berger, S.L., T. Kouzarides, R. Shiekhattar, A. Shilatifard (2009) An operational definition of epigenetics. Genes Dev 23: 781–783.
9.
Berndt, A., P. Schoenenberger, J. Mattis, K.M. Tye, K. Deisseroth, P. Hegemann, et al. (2011) High-efficiency channel rhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci USA 108: 7595–7600.
10.
Berry, B.J., A.S.T. Smith, C.J. Long, C.C. Martin, J.J. Hickman (2018) Physiological Aβ concentrations produce a more biomimetic representation of the Alzheimer’s disease phenotype in iPSC derived human neurons. ACS Chem Neurosci 9: 1693–1701.
11.
Biffi, E., G. Regalia, A. Menegon, G. Ferrigno, A. Pedrocchi (2013) The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study. PLoS One 8: e83899.
12.
Bock, C., E. Kiskinis, G. Verstappen, H. Gu, G. Boulting, Z.D. Smith, et al. (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144: 439–452.
13.
Boekhoorn, K., M. Joels, P.J. Lucassen (2006) Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 24: 1–14.
14.
Bourne, J.N., K.M. Harris (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31: 47–67.
15.
Brownjohn, P.W., J. Smith, E. Portelius, L. Serneels, H. Kvartsberg, B. De Strooper, et al. (2017) Phenotypic screening identifies modulators of amyloid precursor protein processing in human stem cell models of Alzheimer’s disease. Stem Cell Rep 8: 870–882.
16.
Cai, S., L. Han, Q. Ao, Y.-S. Chan, D.K.-Y. Shum (2017) Human induced pluripotent cell-derived sensory neurons for fate commitment of bone marrow-derived Schwann cells: implications for remyelination therapy. Stem Cells Transl Med 6: 369–381.
17.
Camp, J.G., F. Badsha, M. Florio, S. Kanton, T. Gerber, M. Wilsch-Bräuninger, et al. (2015) Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci USA 112: 15672–15677.
18.
Carson, D., M. Hnilova, X. Yang, C.L. Nemeth, J.H. Tsui, A.S.T. Smith, et al. (2016) Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Appl Mater Interfaces 8: 21923–21932.
19.
Chakradhar, S. (2016) An eye to the future: researchers debate best path for stem cell-derived therapies. Nat Med 22: 116–119.
20.
Chal, J., Z. Al Tanoury, M. Hestin, B. Gobert, S. Aivio, A. Hick, et al. (2016) Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 11: 1833–1850.
21.
Chal, J., M. Oginuma, Z. Al Tanoury, B. Gobert, O. Sumara, A. Hick, et al. (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33: 962–969.
22.
Chambers, S.M., C.A. Fasano, E.P. Papapetrou, M. Tomishima, M. Sadelain, L. Studer (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27: 275–280.
23.
Chang, D.T.W., I.J. Reynolds (2006) Differences in mitochondrial movement and morphology in young and mature primary cortical neurons in culture. Neuroscience 141: 727–736.
24.
Chen, J., H. Liu, J. Liu, J. Qi, B. Wei, J. Yang, et al. (2013) H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet 45: 34–42.
25.
Chen, X., K. Zhang, L. Zhou, X. Gao, J. Wang, Y. Yao, et al. (2016) Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation. Protein Cell 7: 175–186.
26.
Chin, M.H., M. Pellegrini, K. Plath, W.E. Lowry (2010) Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell 7: 263–269.
27.
Chouliaras, L., D. Mastroeni, E. Delvaux, A. Grover, G. Kenis, P.R. Hof, et al. (2013) Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging 34: 2091–2099.
28.
Christopher, M.A., S.M. Kyle, D.J. Katz (2017) Neuroepigenetic mechanisms in disease. Epigenetics Chromatin 10: 47.
29.
Cuadrado-Tejedor, M., C. Garcia-Barroso, J.A. Sánchez-Arias, O. Rabal, M. Pérez-González, S. Mederos, et al. (2017) A first-in-class small-molecule that acts as a dual inhibitor of HDAC and PDE5 and that rescues hippocampal synaptic impairment in Alzheimer’s disease mice. Neuropsychopharmacology 42: 524–539.
30.
Cullen, D.K., M.E. Gilroy, H.R. Irons, M.C. Laplaca (2010) Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures. Brain Res 1359: 44–55.
31.
D’Addario, C., S.B. Candia, B. Arosio, M. Di Bartolomeo, C. Abbate, A. Casè, et al. (2017) Transcriptional and epigenetic phenomena in peripheral blood cells of monozygotic twins discordant for Alzheimer’s disease, a case report. J Neurol Sci 372: 211–216.
32.
Deecke, L., P. Dal-Bianco (1991) Age-Associated Neurological Diseases. New York, Springer.
33.
Demestre, M., M. Orth, K.J. Föhr, K. Achberger, A.C. Ludolph, S. Liebau, et al. (2015) Formation and characterisation of neuromuscular junctions between hiPSC derived motoneurons and myotubes. Stem Cell Res 15: 328–336.
34.
Devlin, A.-C., K. Burr, S. Borooah, J.D. Foster, E.M. Cleary, I. Geti, et al. (2015) Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nat Commun 6: 5999.
35.
Dodla, M.C., J. Mumaw, S.L. Stice (2010) Role of astrocytes, soluble factors, cells adhesion molecules and neurotrophins in functional synapse formation: implications for human embryonic stem cell derived neurons. Curr Stem Cell Res Ther 5: 251–260.
36.
Du, F., Q. Yu, A. Chen, D. Chen, S.S. Yan (2018) Astrocytes attenuate mitochondrial dysfunctions in human dopaminergic neurons derived from iPSC. Stem Cell Reports 10: 366–374.
37.
Eaton, S.L., T.M. Wishart (2017) Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 28: 324–337.
38.
Ebrahimi, B. (2015) Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regen 4: 10.
39.
Ehrlich, M., S. Mozafari, M. Glatza, L. Starost, S. Velychko, A.-L. Hallmann, et al. (2017) Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci USA 114: E2243–E2252.
40.
Ernst, A., K. Alkass, S. Bernard, M. Salehpour, S. Perl, J. Tisdale, et al. (2014) Neurogenesis in the striatum of the adult human brain. Cell 156: 1072–1083.
41.
European Academies’ Science Advisory Council (2017) Genome editing: scientific opportunities, public interests and policy options in the European Union. https://easac.eu/fileadmin/PDF_s/reports_statements/Genome_Editing/EASAC_Report_31_on_Genome_Editing.pdf.
42.
Falkenberg, K.J., R.W. Johnstone (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13: 673–691.
43.
Ferrari, A., M. Cecchini, A. Dhawan, S. Micera, I. Tonazzini, R. Stabile, et al. (2011) Nanotopographic control of neuronal polarity. Nano Lett 11: 505–511.
44.
Ficz, G., M.R. Branco, S. Seisenberger, F. Santos, F. Krueger, T.A. Hore, et al. (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473: 398–402.
45.
Franz, D., H.L. Olsen, O. Klink, J. Gimsa (2017) Automated and manual patch clamp data of human induced pluripotent stem cell-derived dopaminergic neurons. Sci Data 4: 170056.
46.
Friedli, M., P. Turelli, A. Kapopoulou, B. Rauwel, N. Castro-Díaz, H.M. Rowe, et al. (2014) Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Genome Res 24: 1251–1259.
47.
Gaspar-Maia, A., Z.A. Qadeer, D. Hasson, K. Ratnakumar, N.A. Leu, G. Leroy, et al. (2013) MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat Commun 4: 1565.
48.
Germain, P.-L., G. Testa (2017) Taming human genetic variability: transcriptomic meta-analysis guides the experimental design and interpretation of iPSC-based disease modeling. Stem Cell Reports 8: 1784–1796.
49.
Gore, A., Z. Li, H.-L. Fung, J.E. Young, S. Agarwal, J. Antosiewicz-Bourget, et al. (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471: 63–67.
50.
Götz, M., A. Stoykova, P. Gruss (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21: 1031–1044.
51.
Gouder, L., J.-Y. Tinevez, H. Goubran-Botros, A. Benchoua, T. Bourgeron, I. Cloëz-Tayarani (2015) Three-dimensional quantification of dendritic spines from pyramidal neurons derived from human induced pluripotent stem cells. J Vis Exp DOI: 10.3791/53197.
52.
Gräff, J., D. Rei, J.-S. Guan, W.-Y. Wang, J. Seo, K.M. Hennig, et al. (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483: 222–226.
53.
Grow, D.A., J.R. McCarrey, C.S. Navara (2016) Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell Res 17: 352–366.
54.
Gu, X.Q., G.G. Haddad (2018) Maturation of neuronal excitability in hippocampal neurons of mice chronically exposed to cyclic hypoxia. Am J Physiol Cell Physiol 284: C1156–C1163.
55.
Gunhanlar, N., G. Shpak, M. van der Kroeg, L.A. Gouty-Colomer, S.T. Munshi, B. Lendemeijer, et al. (2018) A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Mol Psychiatry 23: 1336–1344.
56.
Haenseler, W., S.N. Sansom, J. Buchrieser, S.E. Newey, C.S. Moore, F.J. Nicholls, et al. (2017) A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports 8: 1727–1742.
57.
Hanashima, C., S.C. Li, L. Shen, E. Lai, G. Fishell (2004) Foxg1 suppresses early cortical cell fate. Science 303: 56–59.
58.
Handel, A.E., S. Chintawar, T. Lalic, E. Whiteley, J. Vowles, A. Giustacchini, et al. (2016) Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics. Hum Mol Genet 25: 989–1000.
59.
Harris, K.M., F.E. Jensen, B. Tsao (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12: 2685–2705.
60.
Hawkins, R.D., G.C. Hon, L.K. Lee, Q. Ngo, R. Lister, M. Pelizzola, et al. (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6: 479–491.
61.
He, Z., Q. Yu (2018) Identification and characterization of functional modules reflecting transcriptome transition during human neuron maturation. BMC Genomics 19: 262.
62.
Heneka, M.T., M.J. Carson, J. El Khoury, G.E. Landreth, F. Brosseron, D.L. Feinstein, et al. (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14: 388–405.
63.
Hicks, M.R., J. Hiserodt, K. Paras, W. Fujiwara, A. Eskin, M. Jan, et al. (2018) ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat Cell Biol 20: 46–57.
64.
Holland, M.L., R. Lowe, P.W. Caton, C. Gemma, G. Carbajosa, A.F. Danson, et al. (2016) Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice. Science 353: 495–498.
65.
Hommet, C., K. Mondon, B. De Toffol, T. Constans (2007) Reversible cognitive and neurological symptoms during valproic acid therapy. J Am Geriatr Soc 55: 628–628.
66.
Hong, S.G., T. Winkler, C. Wu, V. Guo, S. Pittaluga, A. Nicolae, et al. (2014) Path to the clinic: assessment of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Rep 7: 1298–1309.
67.
Hu, W., B. Qiu, W. Guan, Q. Wang, M. Wang, W. Li, et al. (2015) Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17: 204–212.
68.
Hu, B.-Y., J.P. Weick, J. Yu, L.-X. Ma, X.-Q. Zhang, J.A. Thomson, et al. (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107: 4335–4340.
69.
Huh, D., Y. Torisawa, G.A. Hamilton, H.J. Kim, D.E. Ingber (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12: 2156.
70.
Huh, C.J., B. Zhang, M.B. Victor, S. Dahiya, L.F. Batista, S. Horvath, et al. (2016) Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. Elife 5.
71.
Hussein, S.M., N.N. Batada, S. Vuoristo, R.W. Ching, R. Autio, E. Närvä, et al. (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471: 58–62.
72.
Idda, M.L., R. Munk, K. Abdelmohsen, M. Gorospe (2018) Noncoding RNAs in Alzheimer’s disease. Wiley Interdiscip Rev RNA 9: e1463.
73.
Ihry, R.J., K.A. Worringer, M.R. Salick, E. Frias, D. Ho, K. Theriault, et al. (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24: 939–946.
74.
Ip, J.P.K., N. Mellios, M. Sur (2018) Rett syndrome: insights into genetic, molecular and circuit mechanisms. Nat Rev Neurosci 19: 368–382.
75.
Ivanov, A.V., H. Peng, V. Yurchenko, K.L. Yap, D.G. Negorev, D.C. Schultz, et al. (2007) PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 28: 823–837.
76.
Jessop, P., M. Toledo-Rodriguez (2018) Hippocampal TET1 and TET2 expression and DNA hydroxymethylation are affected by physical exercise in aged mice. Front Cell Dev Biol 6: 45.
77.
Jiang, H., Y. Rao (2005) Axon formation: fate versus growth. Nat Neurosci 8: 544–546.
78.
Jo, J., Y. Xiao, A.X. Sun, E. Cukuroglu, H.-D. Tran, J. Göke, et al. (2016) Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19: 248–257.
79.
Johnson, C., M.O. Warmoes, X. Shen, J.W. Locasale (2015) Epigenetics and cancer metabolism. Cancer Lett 356: 309–314.
80.
Kang, S., X. Chen, S. Gong, P. Yu, S. Yau, Z. Su, et al. (2017) Characteristic analyses of a neural differentiation model from iPSC-derived neuron according to morphology, physiology, and global gene expression pattern. Sci Rep 7: 12233.
81.
Karimi, M.M., P. Goyal, I.A. Maksakova, M. Bilenky, D. Leung, J.X. Tang, et al. (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8: 676–687.
82.
Kaufmann, M., A. Schuffenhauer, I. Fruh, J. Klein, A. Thiemeyer, P. Rigo, et al. (2015) High-throughput screening using iPSC-derived neuronal progenitors to identify compounds counteracting epigenetic gene silencing in fragile X syndrome. J Biomol Screen 20: 1101–1111.
83.
Kaur, P., D.S. Karolina, S. Sepramaniam, A. Armugam, K. Jeyaseelan (2014) Expression profiling of RNA transcripts during neuronal maturation and ischemic injury. PLoS One 9: e103525.
84.
Kayama, T., I. Suzuki, A. Odawara, T. Sasaki, Y. Ikegaya (2018) Temporally coordinated spiking activity of human induced pluripotent stem cell-derived neurons co-cultured with astrocytes. Biochem Biophys Res Commun 495: 1028–1033.
85.
Kilpinen, H., A. Goncalves, A. Leha, V. Afzal, K. Alasoo, S. Ashford, et al. (2017) Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 546: 370–375.
86.
Kim, K., A. Doi, B. Wen, K. Ng, R. Zhao, P. Cahan, et al. (2010): Epigenetic memory in induced pluripotent stem cells. Nature 467: 285–290.
87.
Kim, S.H., S.-K. Im, S.-J. Oh, S. Jeong, E.-S. Yoon, C.J. Lee, et al. (2017) Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun 8: 14346.
88.
Kolanowski, T.J., C.L. Antos, K. Guan (2017) Making human cardiomyocytes up to date: derivation, maturation state and perspectives. Int J Cardiol 241: 379–386.
89.
Kong, G., Z. Huang, W. Ji, X. Wang, J. Liu, X. Wu, et al. (2017) The ketone metabolite β-hy droxybutyrate attenuates oxidative stress in spinal cord injury by suppression of class I histone deacetylases. J Neurotrauma 34: 2645–2655.
90.
Konur S, Rabinowitz D, Fenstermaker VL, Yuste R: Systematic regulation of spine sizes and densities in pyramidal neurons. J Neurobiol 2003; 56: 95–112.
91.
Kubben, N., T. Misteli (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18: 595–609.
92.
Kuijlaars, J., T. Oyelami, A. Diels, J. Rohrbacher, S. Versweyveld, G. Meneghello, et al. (2016) Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Sci Rep 6: 36529.
93.
Kunze, A., M. Giugliano, A. Valero, P. Renaud (2011) Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials 32: 2088–2098.
94.
Kyttälä, A., R. Moraghebi, C. Valensisi, J. Kettunen, C. Andrus, K.K. Pasumarthy, et al. (2016) Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Reports 6: 200–212.
95.
Lam, R.S., F.M. Töpfer, P.G. Wood, V. Busskamp, E. Bamberg (2017) Functional maturation of human stem cell-derived neurons in long-term cultures. PLoS One 12: e0169506.
96.
Lancaster, M.A., J.A. Knoblich (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9: 2329–2340.
97.
Lancaster, M.A., M. Renner, C.-A. Martin, D. Wenzel, L.S. Bicknell, M.E. Hurles, et al. (2013) Cerebral organoids model human brain development and microcephaly. Nature 501: 373–379.
98.
Laurent, L.C., I. Ulitsky, I. Slavin, H. Tran, A. Schork, R. Morey, et al. (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8: 106–118.
99.
Lavratti, C., G. Dorneles, D. Pochmann, A. Peres, A. Bard, L. de Lima Schipper, et al. (2017) Exercise-induced modulation of histone H4 acetylation status and cytokines levels in patients with schizophrenia. Physiol Behav 168: 84–90.
100.
Lewis, T.L., G.F. Turi, S.-K. Kwon, A. Losonczy, F. Polleux (2016) Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo. Curr Biol 26: 2602–2608.
101.
Li, P., L. Wang, B.D. Bennett, J. Wang, J. Li, Y. Qin, et al. (2017) Rif1 promotes a repressive chromatin state to safeguard against endogenous retrovirus activation. Nucleic Acids Res 45: 12723–12738.
102.
Li, B., H. Yamamori, Y. Tatebayashi, B. Shafit-Zagardo, H. Tanimukai, S. Chen, et al. (2008) Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 67: 78–84.
103.
Lin, Y.-T., J. Seo, F. Gao, H.M. Feldman, H.-L. Wen, J. Penney, et al. (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98: 1141–1154.e7.
104.
Lin, M.-Y., Z.-H. Sheng (2015) Regulation of mitochondrial transport in neurons. Exp Cell Res 334: 35–44.
105.
Liu, Q., S.C. Spusta, R. Mi, R.N.T. Lassiter, M.R. Stark, A. Höke, et al. (2012) Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional Schwann cells. Stem Cells Transl Med 1: 266–278.
106.
López-Otín, C., M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer (2013) The hallmarks of aging. Cell 153: 1194–1217.
107.
Lopizzo, N., L. Bocchio Chiavetto, N. Cattane, G. Plazzotta, F.I. Tarazi, C.M. Pariante, et al. (2015) Gene-environment interaction in major depression: focus on experience-dependent biological systems. Front Psychiatry 6: 68.
108.
Lovat, V., D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, et al. (2005) Carbon nanotube substrates boost neuronal electrical signaling 5: 1107–1110.
109.
Lundy, S.D., W.-Z. Zhu, M. Regnier, M.A. Laflamme (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22: 1991–2002.
110.
Luo, C., M.A. Lancaster, R. Castanon, J.R. Nery, J.A. Knoblich, J.R. Ecker (2016) Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep 17: 3369–3384.
111.
Maksakova, I.A., P. Goyal, J. Bullwinkel, J.P. Brown, M. Bilenky, D.L. Mager, et al. (2011) H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviral silencing. Epigenetics Chromatin 4: 12.
112.
Maoz, R., B.P. Garfinkel, H. Soreq (2017) Alzheimer’s Disease and ncRNAs. Cham, Springer, pp 337–361.
113.
Mariani, J., M.V. Simonini, D. Palejev, L. Tomasini, G. Coppola, A.M. Szekely, et al. (2012) Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci USA 109: 12770–12775.
114.
Martinez-Barbera, J.P., M. Signore, P.P. Boyl, E. Puelles, D. Acampora, R. Gogoi, et al. (2001) Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development 128: 4789–4800.
115.
Martins-Taylor, K., B.S. Nisler, S.M. Taapken, T. Compton, L. Crandall, K.D. Montgomery, et al. (2011) Recurrent copy number variations in human induced pluripotent stem cells. Nat Biotechnol 29: 488–491.
116.
Matsui, T., D. Leung, H. Miyashita, I.A. Maksakova, H. Miyachi, H. Kimura, et al. (2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464: 927–931.
117.
Medda, X., L. Mertens, S. Versweyveld, A. Diels, L. Barnham, A. Bretteville, et al. (2016) Development of a scalable, high-throughput-compatible assay to detect tau aggregates using iPSC-derived cortical neurons maintained in a three-dimensional culture format. J Biomol Screen 21: 804–815.
118.
Mennerick, S., M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L.N. Eisenman, et al. (2010) Diverse voltage-sensitive dyes modulate GABAA receptor function. J Neurosci 30: 2871–2879.
119.
Mertens, J., M.C. Marchetto, C. Bardy, F.H. Gage (2016) Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 17: 424–437.
120.
Mertens, J., A.C.M. Paquola, M. Ku, E. Hatch, L. Böhnke, S. Ladjevardi, et al. (2015) Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17: 705–718.
121.
Miles, D.C., N.A. de Vries, S. Gisler, C. Lieftink, W. Akhtar, E. Gogola, et al. (2017) TRIM28 Is an epigenetic barrier to induced pluripotent stem cell reprogramming. Stem Cells 35: 147–157.
122.
Millan, M.J. (2017) Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review. Prog Neurobiol 156: 1–68.
123.
Miller, J.D., Y.M. Ganat, S. Kishinevsky, R.L. Bowman, B. Liu, E.Y. Tu, et al. (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13: 691–705.
124.
Miller, J.C., M.C. Holmes, J. Wang, D.Y. Guschin, Y.-L. Lee, I. Rupniewski, et al. (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25: 778–785.
125.
National Institutes of Health: Somatic cell genome editing. 2018. https://commonfund.nih.gov/editing.
126.
Nazor, K.L., G. Altun, C. Lynch, H. Tran, J.V. Harness, I. Slavin, et al. (2012) Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10: 620–634.
127.
Nishimura, K., M. Sano, M. Ohtaka, B. Furuta, Y. Umemura, Y. Nakajima, et al. (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286: 4760–4771.
128.
Nishino, K., M. Toyoda, M. Yamazaki-Inoue, Y. Fukawatase, E. Chikazawa, H. Sakaguchi, et al. (2011) DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 7: e1002085.
129.
Obien, M.E.J., K. Deligkaris, T. Bullmann, D.J. Bakkum, U. Frey (2014) Revealing neuronal function through microelectrode array recordings. Front Neurosci 8: 423.
130.
Odawara, A., H. Katoh, N. Matsuda, I. Suzuki (2016) Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Sci Rep 6: 26181.
131.
Odawara, A., Y. Saitoh, A.H. Alhebshi, M. Gotoh, I. Suzuki (2014) Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture. Biochem Biophys Res Commun 443: 1176—1181.
132.
Oh, Y., G.-S. Cho, Z. Li, I. Hong, R. Zhu, M.-J. Kim, et al. (2016) Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19: 95–106.
133.
Ohnuki, M., K. Tanabe, K. Sutou, I. Teramoto, Y. Sawamura, M. Narita, et al. (2014) Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proc Natl Acad Sci USA 111: 12426–12431.
134.
Penn, Y., M. Segal, E. Moses (2016) Network synchronization in hippocampal neurons. Proc Natl Acad Sci USA 113: 3341–3346.
135.
Pevny, L.H., S. Sockanathan, M. Placzek, R. Lovell-Badge (1998) A role for SOX1 in neural determination. Development 125: 1967–1978.
136.
Polo, J.M., S. Liu, M.E. Figueroa, W. Kulalert, S. Eminli, K.Y. Tan, et al. (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28: 848–855.
137.
Prè, D., M.W. Nestor, A.A. Sproul, S. Jacob, P. Koppensteiner, V. Chinchalongporn, et al. (2014) A time course analysis of the electrophysiological properties of neurons differentiated from human induced pluripotent stem cells (iPSCs). PLoS One 9: e103418.
138.
Puttonen, K.A., M. Ruponen, N. Naumenko, O.H. Hovatta, P. Tavi, J. Koistinaho (2015) Generation of functional neuromuscular junctions from human pluripotent stem cell lines. Front Cell Neurosci 9: 473.
139.
Qian, X., H.N. Nguyen, M.M. Song, C. Hadiono, S.C. Ogden, C. Hammack, et al. (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165: 1238–1254.
140.
Robinton, D.A., G.Q. Daley (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481: 295–305.
141.
Roessler, R., S.A. Smallwood, J.V. Veenvliet, P. Pechlivanoglou, S.-P. Peng, K. Chakrabarty, et al. (2014) Detailed analysis of the genetic and epigenetic signatures of iPSC-derived mesodiencephalic dopaminergic neurons. Stem Cell Reports 2: 520–533.
142.
Roubroeks, J.A.Y., R.G. Smith, D.L.A. van den Hove, K. Lunnon (2017) Epigenetics and DNA methylomic profiling in Alzheimer’s disease and other neurodegenerative diseases. J Neurochem 143: 158–170.
143.
Rouhani, F., N. Kumasaka, M.C. de Brito, A. Bradley, L. Vallier, D. Gaffney (2014) Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet 10: e1004432.
144.
Russo, F.B., B.C. Freitas, G.C. Pignatari, I.R. Fernandes, J. Sebat, A.R. Muotri, et al. (2018) Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells. Biol Psychiatry 83: 569–578.
145.
Ryan, N.S., M.N. Rossor (2010) Correlating familial Alzheimer’s disease gene mutations with clinical phenotype. Biomark Med 4: 99–112.
146.
Sanjana, N.E., O. Shalem, F. Zhang (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11: 783–784.
147.
Santhanam, N., L. Kumanchik, X. Guo, F. Sommerhage, Y. Cai, M. Jackson, et al. (2018) Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics. Biomaterials 166: 64–78.
148.
Schaarschmidt, G., S. Schewtschik, R. Kraft, F. Wegner, J. Eilers, J. Schwarz, et al. (2009) A new culturing strategy improves functional neuronal development of human neural progenitor cells. J Neurochem 109: 238–247.
149.
Schlaeger, T.M., L. Daheron, T.R. Brickler, S. Entwisle, K. Chan, A. Cianci, et al. (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33: 58–63.
150.
Selvaraj, V., P. Jiang, O. Chechneva, U.-G. Lo, W. Deng (2012) Differentiating human stem cells into neurons and glial cells for neural repair. Front Biosci (Landmark Ed) 17: 65–89.
151.
Shahbazi, E., F. Mirakhori, V. Ezzatizadeh, H. Baharvand (2018) Reprogramming of somatic cells to induced neural stem cells. Methods 133: 21–28.
152.
Sheehy, S.P., F. Pasqualini, A. Grosberg, S.J. Park, Y. Aratyn-Schaus, K.K. Parker (2014) Quality metrics for stem cell-derived cardiac myocytes. Stem Cell Reports 2: 282–94.
153.
Shimazu, T., M.D. Hirschey, J. Newman, W. He, K. Shirakawa, N. Le Moan, et al. (2013) Suppression of oxidative stress by hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339: 211–214.
154.
Song, L., K. Wang, Y. Li, Y. Yang (2016) Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids Surf B Biointerfaces 148: 49–58.
155.
Spalding, K.L., O. Bergmann, K. Alkass, S. Bernard, M. Salehpour, H.B. Huttner, et al. (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153: 1219–1227.
156.
Studer, L., E. Vera, D. Cornacchia (2015) Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell 16: 591–600.
157.
Sun, Z., D.J. Williams, B. Xu, J.A. Gogos (2018) Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia. Transl Psychiatry 8: 85.
158.
Takahashi, K., S. Yamanaka (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.
159.
Takazawa, T., G.F. Croft, M.W. Amoroso, L. Studer, H. Wichterle, A.B. MacDermott (2012) Maturation of spinal motor neurons derived from human embryonic stem cells. PLoS One 7: e40154.
160.
Tang, M., Q. Song, N. Li, Z. Jiang, R. Huang, G. Cheng (2013) Enhancement of electrical signaling in neural networks on graphene films. Biomaterials 34: 6402–6411.
161.
Tao, H., P. Xie, Y. Cao, L. Shu, L. Li, J. Chen, et al. (2018) The dynamic DNA demethylation during postnatal neuronal development and neural stem cell differentiation. Stem Cells Int 2018: 1–10.
162.
Tieng, V., L. Stoppini, S. Villy, M. Fathi, M. Dubois-Dauphin, K.-H. Krause (2014) Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells Dev 23: 1535–1547.
163.
Toda, T., S.L. Parylak, S.B. Linker, F.H. Gage (2018) The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry DOI: 10.1038/s41380-018-0036-2.
164.
Toh, T.B., J.J. Lim, E.K.-H. Chow (2017) Epigenetics in cancer stem cells. Mol Cancer 16: 29.
165.
Tsai, S.Q., N. Wyvekens, C. Khayter, J.A. Foden, V. Thapar, D. Reyon, et al. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32: 569–576.
166.
Vera, E., N. Bosco, L. Studer (2016) Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation. Cell Rep 17: 1184–1192.
167.
Volmar, C.-H., H. Salah-Uddin, K.J. Janczura, P. Halley, G. Lambert, A. Wodrich, et al. (2018) Multipronged HDAC strategy for Alzheimer’s disease. Biol Psychiatry 83: S46.
168.
Wainger, B.J., E. Kiskinis, C. Mellin, O. Wiskow, S.S.W. Han, J. Sandoe, et al. (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7: 1–11.
169.
Walters, A., E. Phillips, R. Zheng, M. Biju, T. Kuruvilla (2016) Evidence for neuroinflammation in Alzheimer’s disease. Prog Neurol Psychiatry 20: 25–31.
170.
Wang, S., J. Bates, X. Li, S. Schanz, D. Chandler-Militello, C. Levine, et al. (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12: 252–264.
171.
Wang, Y.I., C. Carmona, J.J. Hickman, M.L. Shuler (2018b) Multiorgan microphysiological systems for drug development: strategies, advances, and challenges. Adv Healthc Mater 7: 1701000.
172.
Wang, C., R. Najm, Q. Xu, D.-E. Jeong, D. Walker, M.E. Balestra, et al. (2018a) Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 24: 647–657.
173.
Weissbein, U., O. Plotnik, D. Vershkov, N. Benvenisty (2017) Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells. PLoS Genet 13: e1006979.
174.
Wiggin, G.R., J.P. Fawcett, T. Pawson (2005) Polarity proteins in axon specification and synaptogenesis. Dev Cell 8: 803–816.
175.
Xi, H., W. Fujiwara, K. Gonzalez, M. Jan, S. Liebscher, B. Van Handel, et al. (2017) In vivo human somitogenesis guides somite development from hPSCs. Cell Rep 18: 1573–1585.
176.
Xuan, A., D. Long, J. Li, W. Ji, L. Hong, M. Zhang, et al. (2012) Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci 90: 463–468.
177.
Yamamoto, H., T. Demura, M. Morita, G.A. Banker, T. Tanii, S. Nakamura (2012) Differential neurite outgrowth is required for axon specification by cultured hippocampal neurons. J Neurochem 123: 904–910.
178.
Yang, H.S., N. Ieronimakis, J.H. Tsui, H.N. Kim, K.-Y. Suh, M. Reyes, et al. (2014a) Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy. Biomaterials 35: 1478–1486.
179.
Yang, X., L. Pabon, C.E. Murry (2014b) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114: 511–523.
180.
Yang, S., R. Zhang, G. Wang, Y. Zhang (2017) The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease. Transl Neurodegener 6: 19.
181.
Yoo, J., M. Noh, H. Kim, N.L. Jeon, B.-S. Kim, J. Kim (2015) Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 45: 36–45.
182.
Yoshida, M., S. Kitaoka, N. Egawa, M. Yamane, R. Ikeda, K. Tsukita, et al. (2015) Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs. Stem Cell Reports 4: 561–568.
183.
Zhou, Y., F. Zeng (2013) Integration-free methods for generating induced pluripotent stem cells. Genomics Proteomics Bioinformatics 11: 284–287.
184.
Zhu, Q., R. Stöger, R. Alberio (2018) A lexicon of DNA modifications: their roles in embryo development and the germline. Front Cell Dev Biol 6: 24.
185.
Zhu, W.-Z., B. Van Biber, M.A. Laflamme (2011) Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells. Methods Mol Biol 767: 419–431.
186.
Ziller, M.J., R. Edri, Y. Yaffe, J. Donaghey, R. Pop, W. Mallard, et al. (2015) Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 518: 355–359.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.