The combination of bone tissue scaffolds with osteogenic induction factors is an effective strategy to facilitate bone healing processes. Here, chitosan (CS)/nano-hydroxyapatite (HA) scaffolds containing simvastatin (SIM)-loaded PLGA microspheres were fabricated by combining a freeze-drying technique with a modified water-oil-water emulsion method. The CS/HA weight ratio of 1:2 was selected by analyzing the effect of HA content on the micro-architecture, mechanical strength, and biocompatibility of the scaffold. Drug release kinetics showed that the SIM encapsulated in the scaffold was released in a sustained manner for up to 30 days. In vitro bioactivity study in rat bone marrow-derived mesenchymal stem cells showed that the SIM-loaded scaffolds had a strong ability in accelerating cell proliferation and inducing osteogenic differentiation. Moreover, an in vivo experiment using a rat calvarial defect model also documented that the SIM-loaded scaffolds had a remarkable effect on bone-promoting regeneration. The results of this study suggest that the SIM-loaded CS/HA scaffold is feasible and effective in bone repair and thus may provide a promising route for the treatment of critical-sized bone defects.

1.
Ardura, J.A., S. Portal-Nunez, D. Lozano, I. Gutierrez-Rojas, S. Sanchez-Salcedo, A. Lopez-Herradon, F. Mulero, M.L. Villanueva-Penacarrillo, M. Vallet-Regi, P. Esbrit (2016) Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats. J Biomed Mater Res A 104: 2060-2070.
2.
Biazar, E., S. Heidari Keshel, M.R. Tavirani, R. Jahandideh (2015) Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells. Artif Cells Nanomed Biotechnol 43: 112-116.
3.
Boukari, Y., O. Qutachi, D.J. Scurr, A.P. Morris, S.W. Doughty, N. Billa (2017) A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering. J Biomater Sci Polym Ed 28: 1966-1983.
4.
Chesnutt, B.M., Y. Yuan, K. Buddington, W.O. Haggard, J.D. Bumgardner (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15: 2571-2579.
5.
David, F., T.J. Levingstone, W. Schneeweiss, M. de Swarte, H. Jahns, J.P. Gleeson, F.J. O'Brien (2015) Enhanced bone healing using collagen-hydroxyapatite scaffold implantation in the treatment of a large multiloculated mandibular aneurysmal bone cyst in a thoroughbred filly. J Tissue Eng Regen Med 9: 1193-1199.
6.
Di Liddo, R., P. Paganin, S. Lora, D. Dalzoppo, C. Giraudo, D. Miotto, A. Tasso, S. Barbon, M. Artico, E. Bianchi, P.P. Parnigotto, M.T. Conconi, C. Grandi (2014) Poly-epsilon-caprolactone composite scaffolds for bone repair. Int J Mol Med 34: 1537-1546.
7.
Garg, T., O. Singh, S. Arora, R. Murthy (2012) Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 29: 1-63.
8.
Ge, S., N. Zhao, L. Wang, M. Yu, H. Liu, A. Song, J. Huang, G. Wang, P. Yang (2012) Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold. Int J Nanomedicine 7: 5405-5414.
9.
Gentile, P., V.K. Nandagiri, J. Daly, V. Chiono, C. Mattu, C. Tonda-Turo, G. Ciardelli, Z. Ramtoola (2016) Localised controlled release of simvastatin from porous chitosan-gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application. Mater Sci Eng C Mater Biol Appl 59: 249-257.
10.
Jadhav, S.B., G.K. Jain (2006) Statins and osteoporosis: new role for old drugs. J Pharm Pharmacol 58: 3-18.
11.
Jia, Z., Y. Zhang, Y.H. Chen, A. Dusad, H. Yuan, K. Ren, F. Li, E.V. Fehringer, P.E. Purdue, S.R. Goldring, A. Daluiski, D. Wang (2015) Simvastatin prodrug micelles target fracture and improve healing. J Control Release 200: 23-34.
12.
Kim, S.Y., Y.K. Kim, Y.H. Park, J.C. Park, J.K. Ku, I.W. Um, J.Y. Kim (2017) Evaluation of the healing potential of demineralized dentin matrix fixed with recombinant human bone morphogenetic protein-2 in bone grafts. Materials (Basel) 10: 1049.
13.
Komori, T. (2010). Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339: 189-195.
14.
Kruger, T.E., A.H. Miller, J. Wang (2013) Collagen scaffolds in bone sialoprotein-mediated bone regeneration. ScientificWorldJournal 2013: 812718.
15.
Marrelli, M., G. Falisi, A. Apicella, D. Apicella, M. Amantea, A. Cielo, L. Bonanome, F. Palmieri, L. Santacroce, S. Giannini, E. Di Fabrizio, C. Rastelli, M. Gargari, G. Cuda, F. Paduano, M. Tatullo (2015) Behaviour of dental pulp stem cells on different types of innovative mesoporous and nanoporous silicon scaffolds with different functionalizations of the surfaces. J Biol Regul Homeost Agents 29: 991-997.
16.
Marrelli, M., M. Tatullo (2013) Influence of PRF in the healing of bone and gingival tissues. Clinical and histological evaluations. Eur Rev Med Pharmacol Sci 17: 1958-1962.
17.
Matsumoto, M.A., E.M. de Abreu Furquim, A. Goncalves, J.F. Santiago-Júnior, P.P. Saraiva, C.L. Cardoso, M.S. Munerato, R. Okamoto (2017) Aged rats under zoledronic acid therapy and oral surgery. J Craniomaxillofac Surg 45: 781-787.
18.
Murphy, C.M., F.J. O'Brien (2010) Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr 4: 377-381.
19.
Naito, Y., T. Terukina, S. Galli, Y. Kozai, S. Vandeweghe, T. Tagami, T. Ozeki, T. Ichikawa, P.G. Coelho, R. Jimbo (2014) The effect of simvastatin-loaded polymeric microspheres in a critical size bone defect in the rabbit calvaria. Int J Pharm 461: 157-162.
20.
Ning, L., H. Malmstrom, Y.F. Ren (2015) Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration. J Oral Implantol 41: 45-49.
21.
Noronha Oliveira, M., L.H. Rau, A. Marodin, M. Correa, L.R. Correa, A. Aragones, R.S. Magini (2017) Ridge preservation after maxillary third molar extraction using 30% porosity PLGA/HA/β-TCP scaffolds with and without simvastatin: a pilot randomized controlled clinical trial. Implant Dent 26: 832-840.
22.
O'Brien, F.J., B.A. Harley, I.V. Yannas, L. Gibson (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25: 1077-1086.
23.
Oryan, A., A. Kamali, A. Moshiri (2015) Potential mechanisms and applications of statins on osteogenesis: current modalities, conflicts and future directions. J Control Release 215: 12-24.
24.
Owens, A.P., 3rd, J.R. Byrnes, N. Mackman (2014) Hyperlipidemia, tissue factor, coagulation, and simvastatin. Trends Cardiovasc Med 24: 95-98.
25.
Paduano, F., M. Marrelli, N. Alom, M. Amer, L.J. White, K.M. Shakesheff, M. Tatullo (2017) Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed 28: 730-748.
26.
Park, J.B. (2009) The use of simvastatin in bone regeneration. Med Oral Patol Oral Cir Bucal 14: e485-e488.
27.
Quinlan, E., E.M. Thompson, A. Matsiko, F.J. O'Brien, A. Lopez-Noriega (2015) Functionalization of a collagen-hydroxyapatite scaffold with osteostatin to facilitate enhanced bone regeneration. Adv Healthc Mater 4: 2649-2656.
28.
Rogina, A., P. Rico, G. Gallego Ferrer, M. Ivankovic, H. Ivankovic (2016) In situ hydroxyapatite content affects the cell differentiation on porous chitosan/hydroxyapatite scaffolds. Ann Biomed Eng 44: 1107-1119.
29.
Sardiwal, S., P. Magnusson, D.J. Goldsmith, E.J. Lamb (2013) Bone alkaline phosphatase in CKD-mineral bone disorder. Am J Kidney Dis 62: 810-822.
30.
Sequetto, P.L., R.V. Goncalves, A.S. Pinto, M.G.A. Oliveira, I. Maldonado, T.T. Oliveira, R.D. Novaes (2017) Low doses of simvastatin potentiate the effect of sodium alendronate in inhibiting bone resorption and restore microstructural and mechanical bone properties in glucocorticoid-induced osteoporosis. Microsc Microanal 23: 989-1001.
31.
Shamekhi, M.A., A. Rabiee, H. Mirzadeh, H. Mahdavi, D. Mohebbi-Kalhori, M. Baghaban Eslaminejad (2017) Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications. Mater Sci Eng C Mater Biol Appl 80: 532-542.
32.
Shields, L.B., G.H. Raque, S.D. Glassman, M. Campbell, T. Vitaz, J. Harpring, C.B. Shields (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila PA 1976) 31: 542-547.
33.
Sun, H., J. Wang, F. Deng, Y. Liu, X. Zhuang, J. Xu, L. Li (2016) Codelivery and controlled release of stromal cell-derived factor-1α chemically conjugated on collagen scaffolds enhances bone morphogenetic protein-2-driven osteogenesis in rats. Mol Med Rep 14: 737-745.
34.
Tatullo, M., M. Marrelli, G. Falisi, C. Rastelli, F. Palmieri, M. Gargari, B. Zavan, F. Paduano, V. Benagiano (2016) Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: a topical review. Int J Immunopathol Pharmacol 29: 3-8.
35.
Uswatta, S.P., I.U. Okeke, A.C. Jayasuriya (2016) Injectable porous nano-hydroxyapatite/ chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Mater Sci Eng C Mater Biol Appl 69: 505-512.
36.
Zhang, P., F. Han, Y. Li, J. Chen, T. Chen, Y. Zhi, J. Jiang, C. Lin, S. Chen, P. Zhao (2016) Local delivery of controlled-release simvastatin to improve the biocompatibility of polyethylene terephthalate artificial ligaments for reconstruction of the anterior cruciate ligament. Int J Nanomedicine 11: 465-478.
37.
Zhou, S., Y. Zu, Z. Sun, F. Zhuang, C Yang (2015) Effects of hypergravity on osteopontin expression in osteoblasts. PLoS One 10: e0128846.
38.
Zoch, M.L., T.L. Clemens, R.C. Riddle (2016) New insights into the biology of osteocalcin. Bone 82: 42-49.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.