Abstract
The circling mouse serves as a hearing loss model. It has spontaneous tmie gene mutations that cause hair cell and cochlear degeneration. However, little is known about the role of the tmie gene in superior olivary complex (SOC) regions, in which sound information from the two ears is integrated and primarily relayed to the nuclei of the lateral lemniscus and inferior colliculus. Several studies have reported that abnormal calcium (Ca2+) homeostasis is associated with the pathology of hearing loss. This study investigated the distribution of Ca2+-binding proteins (CaBPs), such as calbindin D28k, parvalbumin, and calretinin, in the SOC of the circling mouse on postnatal day 16. A comparison of wild-type (+/+), heterozygous (+/cir), and homozygous (cir/cir) mice showed that CaBP immunoreactivity was significantly decreased in the auditory nucleus of the SOC of homozygous (cir/cir) mice. A decline in the CaBPs level in the SOC may be the result of hearing loss through hair cell and cochlear degeneration following tmie gene mutation.