Snail family proteins are key inducers of the epithelial-mesenchymal transition (EMT), a critical process required for normal embryonic development. They have also been strongly implicated in regulating the EMT-like processes required for tumour cell invasion, migration, and metastasis. Whether these proteins also contribute to normal blood cell development, however, remains to be clearly defined. Increasing evidence supports a role for the Snail family in regulating cell survival, migration, and differentiation within the haematopoietic system, as well as potentially an oncogenic role in the malignant transformation of haematopoietic stem cells. This review will provide a broad overview of the Snail family, including key aspects of their involvement in the regulation and development of solid organ cancer, as well as a discussion on our current understanding of Snail family function during normal and malignant haematopoiesis.

Al-Hajj, M., M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983-3988.
Altura, R.A., T. Inukai, R.A. Ashmun, G. P. Zambetti, M.F. Roussel, A.T. Look (1998) The chimeric E2A-HLF transcription factor abrogates p53-induced apoptosis in myeloid leukemia cells. Blood 92: 1397-1405.
Alves, C.C., F. Carneiro, H. Hoefler, K.F. Becker (2009) Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci 14: 3035-3050.
Anastassiou, D., V. Rumjantseva, W. Cheng, J. Huang, P.D. Canoll, D.J. Yamashiro, J.J. Kandel (2011) Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo. BMC Cancer 11: 529.
Ayyanathan, K., H. Peng, Z. Hou, W.J. Fredericks, R.K. Goyal, E.M. Langer, G.D. Longmore, F.J. Rauscher, 3rd (2007) The Ajuba LIM domain protein is a corepressor for SNAG domain mediated repression and participates in nucleocytoplasmic shuttling. Cancer Res 67: 9097-9106.
Bachelder, R.E., S.O. Yoon, C. Franci, A.G. de Herreros, A.M. Mercurio (2005) Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 168: 29-33.
Batlle, E., E. Sancho, C. Franci, D. Dominguez, M. Monfar, J. Baulida, A. Garcia De Herreros (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84-89.
Becker, K.F., E. Rosivatz, K. Blechschmidt, E. Kremmer, M. Sarbia, H. Hofler (2007) Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs 185: 204-212.
Bermejo-Rodriguez, C., M. Perez-Caro, P.A. Perez-Mancera, M. Sanchez-Beato, M.A. Piris, I. Sanchez-Garcia (2006) Mouse cDNA microarray analysis uncovers Slug targets in mouse embryonic fibroblasts. Genomics 87: 113-118.
Bertrand, J.Y., N.C. Chi, B. Santoso, S. Teng, D.Y. Stainier, D. Traver (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464: 108-111.
Bhat-Nakshatri, P., H. Appaiah, C. Ballas, P. Pick-Franke, R. Goulet, Jr., S. Badve, E.F. Srour, H. Nakshatri (2010) SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 10: 411.
Blanco, M.J., G. Moreno-Bueno, D. Sarrio, A. Locascio, A. Cano, J. Palacios, M.A. Nieto (2002) Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21: 3241-3246.
Boissel, N., H. Leroy, B. Brethon, N. Philippe, S. de Botton, A. Auvrignon, E. Raffoux, T. Leblanc, X. Thomas, O. Hermine, et al (2006) Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 20: 965-970.
Bolos, V., H. Peinado, M.A. Perez-Moreno, M.F. Fraga, M. Esteller, A. Cano (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499-511.
Bonnet, D., J.E. Dick (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730-737.
Boulay, J.L., C. Dennefeld, A. Alberga (1987) The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature 330: 395-398.
Boyer, B., J.P. Thiery (1993) Epithelium-mesenchyme interconversion as example of epithelial plasticity. APMIS 101: 257-268.
Bradley, C.K., C.R. Norton, Y. Chen, X. Han, C.J. Booth, J.K. Yoon, L.T. Krebs, T. Gridley (2013) The snail family gene snai3 is not essential for embryogenesis in mice. PLoS One 8: e65344.
Bryant, H.E., N. Schultz, H.D. Thomas, K.M. Parker, D. Flower, E. Lopez, S. Kyle, M. Meuth, N.J. Curtin, T. Helleday (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434: 913-917.
Cano, A., M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco, M.G. del Barrio, F. Portillo, M.A. Nieto (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76-83.
Carl, T.F., C. Dufton, J. Hanken, M.W. Klymkowsky (1999) Inhibition of neural crest migration in Xenopus using antisense slug RNA. Dev Biol 213: 101-115.
Carver, E.A., R. Jiang, Y. Lan, K.F. Oram, T. Gridley (2001) The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 21: 8184-8188.
Chen, Y., T. Gridley (2013a) Compensatory regulation of the Snai1 and Snai2 genes during chondrogenesis. J Bone Miner Res 28: 1412-1421.
Chen, Y., T. Gridley (2013b) The SNAI1 and SNAI2 proteins occupy their own and each other's promoter during chondrogenesis. Biochem Biophys Res Commun 435: 356-360.
Cobaleda, C., M. Perez-Caro, C. Vicente-Duenas, I. Sanchez-Garcia (2007) Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu Rev Genet 41: 41-61.
Corn, P.G., B.D. Smith, E.S. Ruckdeschel, D. Douglas, S.B. Baylin, J.G. Herman (2000) E-cadherin expression is silenced by 5′ CpG island methylation in acute leukemia. Clin Cancer Res 6: 4243-4248.
Dahlem, T., S. Cho, G.J. Spangrude, J.J. Weis, J.H. Weis (2012) Overexpression of Snai3 suppresses lymphoid- and enhances myeloid-cell differentiation. Eur J Immunol 42: 1038-1043.
De Craene, B., G. Denecker, P. Vermassen, J. Taminau, C. Mauch, A. Derore, J. Jonkers, E. Fuchs, G. Berx (2014) Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ 21: 310-320.
del Barrio, M.G., M.A. Nieto (2002) Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development 129: 1583-1593.
Derry, W.B., R. Bierings, M. van Iersel, T. Satkunendran, V. Reinke, J.H. Rothman (2007) Regulation of developmental rate and germ cell proliferation in Caenorhabditis elegans by the p53 gene network. Cell Death Differ 14: 662-670.
Du, C., C. Zhang, S. Hassan, M.H. Biswas, K.C. Balaji (2010a) Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res 70: 7810-7819.
Du, F., Y. Nakamura, T.L. Tan, P. Lee, R. Lee, B. Yu, C. Jamora (2010b) Expression of snail in epidermal keratinocytes promotes cutaneous inflammation and hyperplasia conducive to tumor formation. Cancer Res 70: 10080-10089.
Eaves, C.J. (2015) Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125: 2605-2613.
Elloul, S., M.B. Elstrand, J.M. Nesland, C.G. Trope, G. Kvalheim, I. Goldberg, R. Reich, B. Davidson (2005) Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103: 1631-1643.
Emadi Baygi, M., Z.S. Soheili, F. Essmann, A. Deezagi, R. Engers, W. Goering, W.A. Schulz (2010) Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines. Tumour Biol 31: 297-307.
Escriva, M., S. Peiro, N. Herranz, P. Villagrasa, N. Dave, B. Montserrat-Sentis, S.A. Murray, C. Franci, T. Gridley, I. Virtanen, A. Garcia de Herreros (2008) Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Mol Cell Biol 28: 1528-1540.
Esposito, M.T., L. Zhao, T.K. Fung, J.K. Rane, A. Wilson, N. Martin, J. Gil, A.Y. Leung, A. Ashworth, C.W. So (2015) Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat Med 21: 1481-1490.
Fan, F., S. Samuel, K.W. Evans, J. Lu, L. Xia, Y. Zhou, E. Sceusi, F. Tozzi, X.C. Ye, S.A. Mani, L.M. Ellis (2012) Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med 1: 5-16.
Farmer, H., N. McCabe, C.J. Lord, A.N. Tutt, D.A. Johnson, T.B. Richardson, M. Santarosa, K.J. Dillon, I. Hickson, C. Knights, et al. (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917-921.
Fiolka, K., R. Hertzano, L. Vassen, H. Zeng, O. Hermesh, K.B. Avraham, U. Duhrsen, T. Moroy (2006) Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, non-overlapping functions in inner ear development. EMBO Rep 7: 326-333.
Geradts, J., A.G. de Herreros, Z. Su, J. Burchette, G. Broadwater, R.E. Bachelder (2011) Nuclear Snail1 and nuclear ZEB1 protein expression in invasive and intraductal human breast carcinomas. Hum Pathol 42: 1125-1131.
Gingold, J.A., M. Fidalgo, D. Guallar, Z. Lau, Z. Sun, H. Zhou, F. Faiola, X. Huang, D.F. Lee, A. Waghray, et al. (2014) A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming. Mol Cell 56: 140-152.
Grau, Y., C. Carteret, P. Simpson (1984) Mutations and chromosomal rearrangements affecting the expression of snail, a gene involved in embryonic patterning in Drosophila melanogaster. Genetics 108: 347-360.
Grimes, H.L., T.O. Chan, P.A. Zweidler-McKay, B. Tong, P.N. Tsichlis (1996) The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Mol Cell Biol 16: 6263-6272.
Gu, G., J. Yuan, M. Wills, S. Kasper (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67: 4807-4815.
Guo, W., Z. Keckesova, J.L. Donaher, T. Shibue, V. Tischler, F. Reinhardt, S. Itzkovitz, A. Noske, U. Zurrer-Hardi, G. Bell, et al. (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148: 1015-1028.
Gupta, P.B., T.T. Onder, G. Jiang, K. Tao, C. Kuperwasser, R.A. Weinberg, E.S. Lander (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138: 645-659.
Hajra, K.M., D.Y. Chen, E.R. Fearon (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62: 1613-1618.
Han, J., C. Flemington, A.B. Houghton, Z. Gu, G.P. Zambetti, R.J. Lutz, L. Zhu, T. Chittenden (2001) Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 98: 11318-11323.
Harney, A.S., J. Lee, L.M. Manus, P. Wang, D.M. Ballweg, C. LaBonne, T.J. Meade (2009) Targeted inhibition of Snail family zinc finger transcription factors by oligonucleotide-Co(III) Schiff base conjugate. Proc Natl Acad Sci USA 106: 13667-13672.
Harney, A.S., T.J. Meade, C. LaBonne (2012) Targeted inactivation of Snail family EMT regulatory factors by a Co(III)-Ebox conjugate. PLoS One 7: e32318.
Haslehurst, A.M., M. Koti, M. Dharsee, P. Nuin, K. Evans, J. Geraci, T. Childs, J. Chen, J. Li, J. Weberpals, et al. (2012) EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12: 91.
Heeboll, S., M. Borre, P.D. Ottosen, L. Dyrskjot, T.F. Orntoft, N. Torring (2009) Snail1 is over-expressed in prostate cancer. APMIS 117: 196-204.
Hemavathy, K., S.C. Guru, J. Harris, J.D. Chen, Y.T. Ip (2000) Human Slug is a repressor that localizes to sites of active transcription. Mol Cell Biol 20: 5087-5095.
Herranz, N., D. Pasini, V.M. Diaz, C. Franci, A. Gutierrez, N. Dave, M. Escriva, I. Hernandez-Munoz, L. Di Croce, K. Helin, et al. (2008) Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 28: 4772-4781.
Hipp, S., A. Walch, T. Schuster, S. Losko, H. Laux, T. Bolton, H. Hofler, K.F. Becker (2009) Activation of epidermal growth factor receptor results in snail protein but not mRNA overexpression in endometrial cancer. J Cell Mol Med 13: 3858-3867.
Hofmann, E.R., S. Milstein, S.J. Boulton, M. Ye, J.J. Hofmann, L. Stergiou, A. Gartner, M. Vidal, M.O. Hengartner (2002) Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Curr Biol 12: 1908-1918.
Horvay, K., T. Jarde, F. Casagranda, V.M. Perreau, K. Haigh, C.M. Nefzger, R. Akhtar, T. Gridley, G. Berx, J.J. Haigh, et al. (2015) Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J 34: 1319-1335.
Hou, Z., H. Peng, K. Ayyanathan, K.P. Yan, E.M. Langer, G.D. Longmore, F.J. Rauscher, 3rd (2008) The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol 28: 3198-3207.
Hugo, H., M.L. Ackland, T. Blick, M.G. Lawrence, J.A. Clements, E.D. Williams, E.W. Thompson (2007) Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 213: 374-383.
Imai, T., A. Horiuchi, C. Wang, K. Oka, S. Ohira, T. Nikaido, I. Konishi (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163: 1437-1447.
Inaba, T., T. Inukai, T. Yoshihara, H. Seyschab, R.A. Ashmun, C.E. Canman, S.J. Laken, M.B. Kastan, A.T. Look (1996) Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature 382: 541-544.
Inoue, A., M.G. Seidel, W. Wu, S. Kamizono, A.A. Ferrando, R.T. Bronson, H. Iwasaki, K. Akashi, A. Morimoto, J.K. Hitzler, et al. (2002) Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2: 279-288.
Inukai, T., A. Inoue, H. Kurosawa, K. Goi, T. Shinjyo, K. Ozawa, M. Mao, T. Inaba, A.T. Look (1999) SLUG, a CES-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell 4: 343-352.
Jiang, R., Y. Lan, C.R. Norton, J.P. Sundberg, T. Gridley (1998) The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 198: 277-285.
Jiang, Y., X. Zhao, Q. Xiao, Q. Liu, K. Ding, F. Yu, R. Zhang, T. Zhu, G. Ge (2014) Snail and Slug mediate tamoxifen resistance in breast cancer cells through activation of EGFR-ERK independent of epithelial-mesenchymal transition. J Mol Cell Biol 6: 352-354.
Jiao, W., K. Miyazaki, Y. Kitajima (2002) Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer 86: 98-101.
Julien, S., I. Puig, E. Caretti, J. Bonaventure, L. Nelles, F. van Roy, C. Dargemont, A.G. de Herreros, A. Bellacosa, L. Larue (2007) Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 26: 7445-7456.
Kajita, M., K.N. McClinic, P.A. Wade (2004) Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24: 7559-7566.
Kalluri, R., R.A. Weinberg (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420-1428.
Kataoka, H., T. Murayama, M. Yokode, S. Mori, H. Sano, H. Ozaki, Y. Yokota, S. Nishikawa, T. Kita (2000) A novel snail-related transcription factor Smuc regulates basic helix-loop-helix transcription factor activities via specific E-box motifs. Nucleic Acids Res 28: 626-633.
Kim, J.Y., Y.M. Kim, C.H. Yang, S.K. Cho, J.W. Lee, M. Cho (2012) Functional regulation of Slug/Snail2 is dependent on GSK-3β-mediated phosphorylation. FEBS J 279: 2929-2939.
Kim, N.H., H.S. Kim, X.Y. Li, I. Lee, H.S. Choi, S.E. Kang, S.Y. Cha, J.K. Ryu, D. Yoon, E.R. Fearon, et al. (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 195: 417-433.
Kumarswamy, R., G. Mudduluru, P. Ceppi, S. Muppala, M. Kozlowski, J. Niklinski, M. Papotti, H. Allgayer (2012) MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer 130: 2044-2053.
Kurrey, N.K., S.P. Jalgaonkar, A.V. Joglekar, A.D. Ghanate, P.D. Chaskar, R.Y. Doiphode, S.A. Bapat (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27: 2059-2068.
Kusewitt, D.F., C. Choi, K.M. Newkirk, P. Leroy, Y. Li, M.G. Chavez, L.G. Hudson (2009) Slug/Snai2 is a downstream mediator of epidermal growth factor receptor-stimulated reepithelialization. J Invest Dermatol 129: 491-495.
LaBonne, C., M. Bronner-Fraser (2000) Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev Biol 221: 195-205.
Langer, E.M., Y. Feng, H. Zhaoyuan, F.J. Rauscher, 3rd, K.L. Kroll, G.D. Longmore (2008) Ajuba LIM proteins are snail/slug corepressors required for neural crest development in Xenopus. Dev Cell 14: 424-436.
Lapidot, T., A. Dar, O. Kollet (2005) How do stem cells find their way home? Blood 106: 1901-1910.
Lapidot, T., C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Caceres-Cortes, M. Minden, B. Paterson, M.A. Caligiuri, J.E. Dick (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645-648.
Lerner, C., D.E. Harrison (1990) 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp Hematol 18: 114-118.
Liang, Y.J., Q.Y. Wang, C.X. Zhou, Q.Q. Yin, M. He, X.T. Yu, D.X. Cao, G.Q. Chen, J.R. He, Q. Zhao (2013) MiR-124 targets Slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis 34: 713-722.
Lin, T., A. Ponn, X. Hu, B.K. Law, J. Lu (2010a) Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29: 4896-4904.
Lin, Y., Y. Wu, J. Li, C. Dong, X. Ye, Y.I. Chi, B.M. Evers, B.P. Zhou (2010b) The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 29: 1803-1816.
Lu, Z., S. Ghosh, Z. Wang, T. Hunter (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 4: 499-515.
Luanpitpong, S., J. Li, A. Manke, K. Brundage, E. Ellis, S.L. McLaughlin, P. Angsutararux, N. Chanthra, M. Voronkova, Y.C. Chen, et al. (2016) SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene 35: 2824-2833.
MacPherson, M.R., P. Molina, S. Souchelnytskyi, C. Wernstedt, J. Martin-Perez, F. Portillo, A. Cano (2010) Phosphorylation of serine 11 and serine 92 as new positive regulators of human Snail1 function: potential involvement of casein kinase-2 and the cAMP-activated kinase protein kinase A. Mol Biol Cell 21: 244-253.
Mani, S.A., W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, et al. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704-715.
Manzanares, M., A. Locascio, M.A. Nieto (2001) The increasing complexity of the Snail gene superfamily in metazoan evolution. Trends Genet 17: 178-181.
Mariano, G., M.R. Ricciardi, D. Trisciuoglio, M. Zampieri, F. Ciccarone, T. Guastafierro, R. Calabrese, E. Valentini, A. Tafuri, D. Del Bufalo, et al. (2015) PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression. Oncotarget 6: 15008-15021.
Martin, T.A., A. Goyal, G. Watkins, W.G. Jiang (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12: 488-496.
Mayor, R., N. Guerrero, R.M. Young, J.L. Gomez-Skarmeta, C. Cuellar (2000) A novel function for the Xslug gene: control of dorsal mesendoderm development by repressing BMP-4. Mech Dev 97: 47-56.
Melki, J.R., P.C. Vincent, R.D. Brown, S.J. Clark (2000) Hypermethylation of E-cadherin in leukemia. Blood 95: 3208-3213.
Metzstein, M.M., H.R. Horvitz (1999) The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol Cell 4: 309-319.
Mittal, M.K., J.N. Myers, S. Misra, C.K. Bailey, G. Chaudhuri (2008) In vivo binding to and functional repression of the VDR gene promoter by SLUG in human breast cells. Biochem Biophys Res Commun 372: 30-34.
Miyoshi, A., Y. Kitajima, K. Sumi, K. Sato, A. Hagiwara, Y. Koga, K. Miyazaki (2004) Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 90: 1265-1273.
Molina-Ortiz, P., A. Villarejo, M. MacPherson, V. Santos, A. Montes, S. Souchelnytskyi, F. Portillo, A. Cano (2012) Characterization of the SNAG and SLUG domains of Snail2 in the repression of E-cadherin and EMT induction: modulation by serine 4 phosphorylation. PLoS One 7: e36132.
Moody, S.E., D. Perez, T.C. Pan, C.J. Sarkisian, C.P. Portocarrero, C.J. Sterner, K.L. Notorfrancesco, R.D. Cardiff, L.A. Chodosh (2005) The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8: 197-209.
Morel, A.P., M. Lievre, C. Thomas, G. Hinkal, S. Ansieau, A. Puisieux (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3: e2888.
Murray, S.A., T. Gridley (2006) Snail family genes are required for left-right asymmetry determination, but not neural crest formation, in mice. Proc Natl Acad Sci USA 103: 10300-10304.
Murray, S.A., K.F. Oram, T. Gridley (2007) Multiple functions of Snail family genes during palate development in mice. Development 134: 1789-1797.
Nassour, M., Y. Idoux-Gillet, A. Selmi, C. Come, M.L. Faraldo, M.A. Deugnier, P. Savagner (2012) Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis. PLoS One 7: e53498.
Niessen, K., Y. Fu, L. Chang, P.A. Hoodless, D. McFadden, A. Karsan (2008) Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 182: 315-325.
Nieto, M.A. (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155-166.
Nieto, M.A., M.G. Sargent, D.G. Wilkinson, J. Cooke (1994) Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264: 835-839.
O'Brien, C.A., A. Pollett, S. Gallinger, J.E. Dick (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106-110.
Park, I.K., D. Qian, M. Kiel, M.W. Becker, M. Pihalja, I.L. Weissman, S.J. Morrison, M.F. Clarke (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302-305.
Park, S.Y., H.S. Kim, N.H. Kim, S. Ji, S.Y. Cha, J.G. Kang, I. Ota, K. Shimada, N. Konishi, H.W. Nam, et al. (2010) Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. EMBO J 29: 3787-3796.
Peinado, H., E. Ballestar, M. Esteller, A. Cano (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24: 306-319.
Peinado, H., M. Del Carmen Iglesias-de la Cruz, D. Olmeda, K. Csiszar, K.S. Fong, S. Vega, M.A. Nieto, A. Cano, F. Portillo (2005) A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24: 3446-3458.
Peinado, H., M. Quintanilla, A. Cano (2003) Transforming growth factor β-1 induces Snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278: 21113-21123.
Perez-Losada, J., M. Sanchez-Martin, M. Perez-Caro, P.A. Perez-Mancera, I. Sanchez-Garcia (2003) The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene 22: 4205-4211.
Perez-Losada, J., M. Sanchez-Martin, A. Rodriguez-Garcia, M.L. Sanchez, A. Orfao, T. Flores, I. Sanchez-Garcia (2002) Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 100: 1274-1286.
Perez-Mancera, P.A., I. Gonzalez-Herrero, M. Perez-Caro, N. Gutierrez-Cianca, T. Flores, A. Gutierrez-Adan, B. Pintado, M. Sanchez-Martin, I. Sanchez-Garcia (2005a) SLUG in cancer development. Oncogene 24: 3073-3082.
Perez-Mancera, P.A., M. Perez-Caro, I. Gonzalez-Herrero, T. Flores, A. Orfao, A.G. de Herreros, A. Gutierrez-Adan, B. Pintado, A. Sagrera, M. Sanchez-Martin, I. Sanchez-Garcia (2005b) Cancer development induced by graded expression of Snail in mice. Hum Mol Genet 14: 3449-3461.
Perl, A.K., P. Wilgenbus, U. Dahl, H. Semb, G. Christofori (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190-193.
Phillips, S., A. Prat, M. Sedic, T. Proia, A. Wronski, S. Mazumdar, A. Skibinski, S.H. Shirley, C.M. Perou, G. Gill, et al. (2014) Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cell Reports 2: 633-647.
Pioli, P.D., X. Chen, J.J. Weis, J.H. Weis (2015) Fatal autoimmunity results from the conditional deletion of Snai2 and Snai3. Cell Immunol 295: 1-18.
Pioli, P.D., T.J. Dahlem, J.J. Weis, J.H. Weis (2013) Deletion of Snai2 and Snai3 results in impaired physical development compounded by lymphocyte deficiency. PLoS One 8: e69216.
Prat, A., J.S. Parker, O. Karginova, C. Fan, C. Livasy, J.I. Herschkowitz, X. He, C.M. Perou (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12: R68.
Radisky, D.C. (2005) Epithelial-mesenchymal transition. J Cell Sci 118: 4325-4326.
Rao, Q., J.Y. Wang, J. Meng, K. Tang, Y. Wang, M. Wang, H. Xing, Z. Tian, J. Wang (2011) Low-expression of E-cadherin in leukaemia cells causes loss of homophilic adhesion and promotes cell growth. Cell Biol Int 35: 945-951.
Reya, T., S.J. Morrison, M.F. Clarke, I.L. Weissman (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105-111.
Ricci-Vitiani, L., D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. De Maria (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111-115.
Rodriguez, M.I., A. Gonzalez-Flores, F. Dantzer, J. Collard, A.G. de Herreros, F.J. Oliver (2011) Poly(ADP-ribose)-dependent regulation of Snail1 protein stability. Oncogene 30: 4365-4372.
Romano, L.A., R.B. Runyan (2000) Slug is an essential target of TGFβ2 signaling in the developing chicken heart. Dev Biol 223: 91-102.
Sahlgren, C., M.V. Gustafsson, S. Jin, L. Poellinger, U. Lendahl (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 105: 6392-6397.
Saleque, S., J. Kim, H.M. Rooke, S.H. Orkin (2007) Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 27: 562-572.
Sanchez-Martin, M., J. Perez-Losada, A. Rodriguez-Garcia, B. Gonzalez-Sanchez, B.R. Korf, W. Kuster, C. Moss, R.A. Spritz, I. Sanchez-Garcia (2003) Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A 122A: 125-132.
Sanchez-Martin, M., A. Rodriguez-Garcia, J. Perez-Losada, A. Sagrera, A.P. Read, I. Sanchez-Garcia (2002) SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 11: 3231-3236.
Seita, J., I.L. Weissman (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2: 640-653.
Shih, J.Y. M.F. Tsai, T.H. Chang, Y.L. Chang, A. Yuan, C.J. Yu, S.B. Lin, G.Y. Liou, M.L. Lee, J.J. Chen, et al. (2005) Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 15: 8070-8078.
Siemens, H., R. Jackstadt, S. Hunten, M. Kaller, A. Menssen, U. Gotz, H. Hermeking (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10: 4256-4271.
Simpson, P. (1983) Maternal-zygotic gene interactions during formation of the dorsoventral pattern in Drosophila embryos. Genetics 105: 615-632.
Smith, B.N., L.J. Burton, V. Henderson, D.D. Randle, D.J. Morton, B.A. Smith, L. Taliaferro-Smith, P. Nagappan, C. Yates, M. Zayzafoon, et al. (2014) Snail promotes epithelial mesenchymal transition in breast cancer cells in part via activation of nuclear ERK2. PLoS One 9: e104987.
Sun, Y., L. Shao, H. Bai, Z.Z. Wang, W.S. Wu (2010) Slug deficiency enhances self-renewal of hematopoietic stem cells during hematopoietic regeneration. Blood 115: 1709-1717.
Taube, J.H., J.I. Herschkowitz, K. Komurov, A.Y. Zhou, S. Gupta, J. Yang, K. Hartwell, T.T. Onder, P.B. Gupta, K.W. Evans, et al. (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 107: 15449-15454.
Vargel, O., Y. Zhang, K. Kosim, K. Ganter, S. Foehr, Y. Mardenborough, M. Shvartsman, A.J. Enright, J. Krijgsveld, C. Lancrin (2016) Activation of the TGFβ pathway impairs endothelial to haematopoietic transition. Sci Rep 6: 21518.
Vega, S., A.V. Morales, O.H. Ocana, F. Valdes, I. Fabregat, M.A. Nieto (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18: 1131-1143.
Wang, S.P., W.L. Wang, Y.L. Chang, C.T. Wu, Y.C. Chao, S.H. Kao, A. Yuan, C.W. Lin, S.C. Yang, W.K. Chan, et al. (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11: 694-704.
Wu, W.S., S. Heinrichs, D. Xu, S.P. Garrison, G.P. Zambetti, J.M. Adams, A.T. Look (2005) Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123: 641-653.
Wu, Y., J. Deng, P.G. Rychahou, S. Qiu, B.M. Evers, B.P. Zhou (2009a) Stabilization of snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 15: 416-428.
Wu, Y., B.M. Evers, B.P. Zhou (2009b) Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J Biol Chem 284: 640-648.
Wu, Z.Q., X.Y. Li, C.Y. Hu, M. Ford, C.G. Kleer, S.J. Weiss (2012) Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci USA 109: 16654-16659.
Yang, Z., S. Rayala, D. Nguyen, R.K. Vadlamudi, S. Chen, R. Kumar (2005) Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions. Cancer Res 65: 3179-3184.
Yokoyama, K., N. Kamata, E. Hayashi, T. Hoteiya, N. Ueda, R. Fujimoto, M. Nagayama (2001) Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol 37: 65-71.
Yook, J.I., X.Y. Li, I. Ota, E.R. Fearon, S.J. Weiss (2005) Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280: 11740-11748.
Zhang, K., E. Rodriguez-Aznar, N. Yabuta, R.J. Owen, J.M. Mingot, H. Nojima, M.A. Nieto, G.D. Longmore (2012) Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation. EMBO J 31: 29-43.
Zhang, Z., B. Zhang, W. Li, L. Fu, L. Fu, Z. Zhu, J.T. Dong (2011) Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer 2: 782-791.
Zhou, B.P., J. Deng, W. Xia, J. Xu, Y.M. Li, M. Gunduz, M.C. Hung (2004) Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6: 931-940.
Zhou, W., R. Lv, W. Qi, D. Wu, Y. Xu, W. Liu, Y. Mou, L. Wang (2014) Snail contributes to the maintenance of stem cell-like phenotype cells in human pancreatic cancer. PLoS One 9: e87409.
Zhu, G.H., C. Huang, Z.Z. Feng, X.H. Lv, Z.J. Qiu (2013) Hypoxia-induced snail expression through transcriptional regulation by HIF-1α in pancreatic cancer cells. Dig Dis Sci 58: 3503-3515.
Zhuo, W., Y. Wang, X. Zhuo, Y. Zhang, X. Ao, Z. Chen (2008) Knockdown of Snail, a novel zinc finger transcription factor, via RNA interference increases A549 cell sensitivity to cisplatin via JNK/mitochondrial pathway. Lung Cancer 62: 8-14.
Zovein, A.C., J.J. Hofmann, M. Lynch, W.J. French, K.A. Turlo, Y. Yang, M.S. Becker, L. Zanetta, E. Dejana, J.C. Gasson, et al. (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3: 625-636.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.