Tissue-engineered skeletal muscle has the promise to be a tool for studying physiology, screening muscle-active drugs, and clinical replacement of damaged muscle. To maximize the potential benefits of engineered muscle, it is important to understand the factors required for tissue formation and how these affect muscle function. In this review, we evaluate how biomaterials, cell source, media components, and bioreactor interventions impact muscle function and phenotype.

Adams, G.R., F. Haddad, P.W. Bodell, P.D. Tran, K.M. Baldwin (2007) Combined isometric, concentric, and eccentric resistance exercise prevents unloading-induced muscle atrophy in rats. J Appl Physiol (1985) 103: 1644-1654.
Bach, A.D., J.P. Beier, J. Stern-Staeter, R.E. Horch (2004) Skeletal muscle tissue engineering. J Cell Mol Med 8: 413-422.
Bian, W., N. Bursac (2009) Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials 30: 1401-1412.
Bian, W., B. Liau, N. Badie, N. Bursac (2009) Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nat Protoc 4: 1522-1534.
Birla, R.K., Y.C. Huang, R.G. Dennis (2008) Effect of streptomycin on the active force of bioengineered heart muscle in response to controlled stretch. In Vitro Cell Dev Biol Anim 44: 253-260.
Bodine, S.C., T.N. Stitt, M. Gonzalez, W.O. Kline, G.L. Stover, R. Bauerlein, E. Zlotchenko, A. Scrimgeour, J.C. Lawrence, D.J. Glass, G.D. Yancopoulos (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014-1019.
Boonen, K.J., M.L. Langelaan, R.B. Polak, D.W. van der Schaft, F.P. Baaijens, M.J. Post (2010) Effects of a combined mechanical stimulation protocol: value for skeletal muscle tissue engineering. J Biomech 43: 1514-1521.
Cerny, L.C., E. Bandman (1986) Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J Cell Biol 103(6 pt 1): 2153-2161.
Cheema, U., R. Brown, V. Mudera, S.Y. Yang, G. McGrouther, G. Goldspink (2005) Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle. J Cell Physiol 202: 67-75.
Chiron, S., C. Tomczak, A. Duperray, J. Lainé, G. Bonne, A. Eder, A. Hansen, T. Eschenhagen, C. Verdier, C. Coirault (2012) Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix. PLoS One 7: e36173.
Clark, P., G.A. Dunn, A. Knibbs, M. Peckham (2002) Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int J Biochem Cell Biol 34: 816-825.
Close, R.I. (1972) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52: 129-197.
Collet, J.P., H. Shuman, R.E. Ledger, S. Lee, J.W. Weisel (2005) The elasticity of an individual fibrin fiber in a clot. Proc Natl Acad Sci USA 102: 9133-9137.
Cummings, C.L., D. Gawlitta, R.M. Nerem, J.P. Stegemann (2004) Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 25: 3699-3706.
Dennis, R.G., P.E. Kosnik, 2nd, M.E. Gilbert, J.A. Faulkner (2001) Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am J Physiol Cell Physiol 280: C288-C295.
Donnelly, K., A. Khodabukus, A. Philp, L. Deldicque, R.G. Dennis, K. Baar (2010) A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng Part C Methods 16: 711-718.
Engler, A.J., M.A. Griffin, S. Sen, C.G. Bonnemann, H.L. Sweeney, D.E. Discher (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166: 877-887.
Evans, D.J., S. Britland, P.M. Wigmore (1999) Differential response of fetal and neonatal myoblasts to topographical guidance cues in vitro. Dev Genes Evol 209: 438-442.
Fujita, H., A. Endo, K. Shimizu, E. Nagamori (2010a) Evaluation of serum-free differentiation conditions for C2C12 myoblast cells assessed as to active tension generation capability. Biotechnol Bioeng 107: 894-901.
Fujita, H., M. Hirano, K. Shimizu, E. Nagamori (2010b) Rapid decrease in active tension generated by C2C12 myotubes after termination of artificial exercise. J Muscle Res Cell Motil 31: 279-288.
Gawlitta, D., K.J. Boonen, C.W. Oomens, F.P. Baaijens, C.V. Bouten (2008) The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model. Tissue Eng Part A 14: 161-171.
Gharaibeh, B., A. Lu, J. Tebbets, B. Zheng, J. Feduska, M. Crisan, B. Peault, J. Cummins, J. Huard (2008) Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc 3: 1501-1509.
Grassl, E.D., T.R. Oegema, R.T. Tranquillo (2002) Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J Biomed Mater Res 60: 607-612.
Greiner, E.F., M. Guppy, K. Brand (1994) Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 269: 31484-31490.
Grounds, M.D., L. Sorokin, J. White (2005) Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 15: 381-391.
Harvey, W. (1628) De Motu Cordis; in Willius, F.A., T.E. Keys (eds) (1941): Classics of Cardiology. New York, Dover, pp 18-79.
Hinds, S., W. Bian, R.G. Dennis, N. Bursac (2011) The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 32: 3575-3583.
Huang, N.F., S. Patel, R.G. Thakar, J. Wu, B.S. Hsiao, B. Chu, R.J. Lee, S. Li (2006a) Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett 6: 537-542.
Huang, Y.C., R.G. Dennis, K. Baar (2006b) Cultured slow vs. fast skeletal muscle cells differ in physiology and responsiveness to stimulation. Am J Physiol Cell Physiol 291: C11-C17.
Huang, Y.C., R.G. Dennis, L. Larkin, K. Baar (2005) Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 98: 706-713.
Hurst, R.E., C.D. Kamat, K.D. Kyker, D.E. Green, M.A. Ihnat (2005) A novel multidrug resistance phenotype of bladder tumor cells grown on Matrigel or SIS gel. Cancer Lett 217: 171-180.
Ikebe, C., K. Suzuki (2014) Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. Biomed Res Int 2014: 951512.
Ito, A., Y. Yamamoto, M. Sato, K. Ikeda, M. Yamamoto, H. Fujita, E. Nagamori, Y. Kawabe, M. Kamihira (2014) Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation. Sci Rep 4: 4781.
Juhas, M., N. Bursac (2014) Roles of adherent myogenic cells and dynamic culture in engineered muscle function and maintenance of satellite cells. Biomaterials 35: 9438-9446.
Juhas, M., G.C. Engelmayr, A.N. Fontanella, G.M. Palmer, N. Bursac (2014) Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci USA 111: 5508-5513.
Khodabukus, A., K. Baar (2009) Regulating fibrinolysis to engineer skeletal muscle from the C2C12 cell line. Tissue Eng Part C Methods 15: 501-511.
Khodabukus, A., K. Baar (2012) Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng Part C Methods 18: 349-357.
Khodabukus, A., K. Baar (2014) The effect of serum origin on tissue engineered skeletal muscle function. J Cell Biochem 115: 2198-2207.
Khodabukus, A., K. Baar (2015a) Contractile and metabolic properties of engineered skeletal muscle derived from slow and fast phenotype mouse muscle. J Cell Physiol 230: 1750-1757.
Khodabukus, A., K. Baar (2015b) Glucose concentration and streptomycin alter in vitro muscle function and metabolism. J Cell Physiol 230: 1226-1234.
Khodabukus, A., K. Baar (2015c) Streptomycin decreases the functional shift to a slow phenotype induced by electrical stimulation in engineered muscle. Tissue Eng Part A 21: 1003-1012.
Khodabukus, A., L.M. Baehr, S.C. Bodine, K. Baar (2015) Role of contraction duration in inducing fast-to-slow contractile and metabolic protein and functional changes in engineered muscle. J Cell Physiol 230: 2489-2497.
Khodabukus, A., J.Z. Paxton, K. Donnelly, K. Baar (2007) Engineered muscle: a tool for studying muscle physiology and function. Exerc Sport Sci Rev 35: 186-191.
Kleinman, H.K., M.L. McGarvey, L.A. Liotta, P.G. Robey, K. Tryggvason, G.R. Martin (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21: 6188-6193.
Knapp, D.M., E.F. Helou, R.T. Tranquillo (1999) A fibrin or collagen gel assay for tissue cell chemotaxis: assessment of fibroblast chemotaxis to GRGDSP. Exp Cell Res 247: 543-553.
Lam, M.T., Y.C. Huang, R.K. Birla, S. Takayama (2009) Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs. Biomaterials 30: 1150-1155.
Lee, P.H., H.H. Vandenburgh (2013) Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system. Tissue Eng Part A 19: 2147-2155.
Li, B., M. Lin, Y. Tang, B. Wang, J.H. Wang (2008) A novel functional assessment of the differentiation of micropatterned muscle cells. J Biomech 41: 3349-3353.
Li, M., C.E. Dickinson, E.B. Finkelstein, C.M. Neville, C.A. Sundback (2011) The role of fibroblasts in self-assembled skeletal muscle. Tissue Eng Part A 17: 2641-2650.
Lieber, R. (2002) Skeletal Muscle Structure, Function, & Plasticity. Philadelphia, Lippincott Williams & Wilkins.
Machida, S., E.E. Spangenburg, F.W. Booth (2004) Primary rat muscle progenitor cells have decreased proliferation and myotube formation during passages. Cell Prolif 37: 267-277.
Madden, L., M. Juhas, W.E. Kraus, G.A. Truskey, N. Bursac (2015) Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife 4: e04885.
Maley, M.A., M.J. Davies, M.D. Grounds (1995) Extracellular matrix, growth factors, genetics: their influence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle. Exp Cell Res 219: 169-179.
Marroquin, L.D., J. Hynes, J.A. Dykens, J.D. Jamieson, Y. Will (2007) Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97: 539-547.
Martin, N.R., S.L. Passey, D.J. Player, A. Khodabukus, R.A. Ferguson, A.P. Sharples, V. Mudera, K. Baar, M.P. Lewis (2013) Factors affecting the structure and maturation of human tissue engineered skeletal muscle. Biomaterials 34: 5759-5765.
Mertens, J.P., K.B. Sugg, J.D. Lee, L.M. Larkin (2014) Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue. Regen Med 9: 89-100.
Moon du, G., G. Christ, J.D. Stitzel, A. Atala, J.J. Yoo (2008) Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng Part A 14: 473-482.
Moss, P.S., D.H. Spector, C.A. Glass, R.C. Strohman (1984) Streptomycin retards the phenotypic maturation of chick myogenic cells. In Vitro 20: 473-478.
Muul, L.M., L.M. Tuschong, S.L. Soenen, G.J. Jagadeesh, W.J. Ramsey, Z. Long, C.S. Carter, E.K. Garabedian, M. Alleyne, M. Brown, W. Bernstein, S.H. Schurman, T.A. Fleisher, S.F. Leitman, C.E. Dunbar, R.M. Blaese, F. Candotti (2003) Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood 101: 2563-2569.
Okano, T., T. Matsuda (1997) Hybrid muscular tissues: preparation of skeletal muscle cell-incorporated collagen gels. Cell Transplant 6: 109-118.
Okano, T., T. Matsuda (1998) Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues. Cell Transplant 7: 71-82.
Olwin, B.B., K. Arthur, K. Hannon, P. Hein, A. McFall, B. Riley, G. Szebenyi, Z. Zhou, M.E. Zuber, A.C. Rapraeger, A.J. Kudla, J.F. Fallon (1994) Role of FGFs in skeletal muscle and limb development. Mol Reprod Dev 39: 90-100; discussion 100-101.
Powell, C.A., B.L. Smiley, J. Mills, H.H. Vandenburgh (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283: C1557-C1565.
Qu-Petersen, Z., B. Deasy, R. Jankowski, M. Ikezawa, J. Cummins, R. Pruchnic, J. Mytinger, B. Cao, C. Gates, A. Wernig, J. Huard (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157: 851-864.
Racca, A.W., A.E. Beck, V.S. Rao, G.V. Flint, S.D. Lundy, D.E. Born, M.J. Bamshad, M. Regnier (2013) Contractility and kinetics of human fetal and human adult skeletal muscle. J Physiol 591(pt 12): 3049-3061.
Rodrigues, M.A., R. Mattei (1987) The influence of serum substitute Ultroser G in toxicological evaluations in mammalian cells in vitro. Ecotoxicol Environ Saf 14: 269-274.
Ross, J.J., M.J. Duxson, A.J. Harris (1987) Neural determination of muscle fibre numbers in embryonic rat lumbrical muscles. Development 100: 395-409.
Ross, J.J., R.T. Tranquillo (2003) ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol 22: 477-490.
Rosso, F., A. Giordano, M. Barbarisi, A. Barbarisi (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199: 174-180.
Sakamoto, N., K. Tsuji, L.M. Muul, A.M. Lawler, E.F. Petricoin, F. Candotti, J.A. Metcalf, J.A. Tavel, H.C. Lane, W.J. Urba, B.A. Fox, A. Varki, J.K. Lunney, A.S. Rosenberg (2007) Bovine apolipoprotein B-100 is a dominant immunogen in therapeutic cell populations cultured in fetal calf serum in mice and humans. Blood 110: 501-508.
Shansky, J., M. Del Tatto, J. Chromiak, H. Vandenburgh (1997) A simplified method for tissue engineering skeletal muscle organoids in vitro. In Vitro Cell Dev Biol Anim 33: 659-661.
Shi, Y., L. Rittman, I. Vesely (2006) Novel geometries for tissue-engineered tendonous collagen constructs. Tissue Eng 12: 2601-2609.
Sicari, B.M., J.P. Rubin, C.L. Dearth, M.T. Wolf, F. Ambrosio, M. Boninger, N.J. Turner, D.J. Weber, T.W. Simpson, A. Wyse, E.H. Brown, J.L. Dziki, L.E. Fisher, S. Brown, S.F. Badylak (2014) An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 6: 234ra258.
Smith, A.S., C.J. Long, K. Pirozzi, S. Najjar, C. McAleer, H.H. Vandenburgh, J.J. Hickman (2014) A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro. J Biotechnol 185: 15-18.
Spangenburg, E.E., T.A. McBride (2006) Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol 100: 129-135.
Strohman, R.C., E. Bayne, D. Spector, T. Obinata, J. Micou-Eastwood, A. Maniotis (1990) Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cell Dev Biol 26: 201-208.
Suelves, M., R. Lopez-Alemany, F. Lluis, G. Aniorte, E. Serrano, M. Parra, P. Carmeliet, P. Munoz-Canoves (2002) Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 99: 2835-2844.
Vandenburgh, H.H., S. Hatfaludy, P. Karlisch, J. Shansky (1989) Skeletal muscle growth is stimulated by intermittent stretch-relaxation in tissue culture. Am J Physiol 256(3 pt 1): C674-C682.
Vandenburgh, H.H., P. Karlisch, L. Farr (1988) Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol 24: 166-174.
Vandenburgh, H., J. Shansky, F. Benesch-Lee, V. Barbata, J. Reid, L. Thorrez, R. Valentini, G. Crawford (2008) Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37: 438-447.
Vandenburgh, H.H., S. Swasdison, P. Karlisch (1991) Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J 5: 2860-2867.
Windisch, A., K. Gundersen, M.J. Szabolcs, H. Gruber, T. Lomo (1998) Fast to slow transformation of denervated and electrically stimulated rat muscle. J Physiol 510(pt 2): 623-632.
Wojtczak, L. (1996) The Crabtree effect: a new look at the old problem. Acta Biochim Pol 43: 361-368.
Yan, W., S. George, U. Fotadar, N. Tyhovych, A. Kamer, M.J. Yost, R.L. Price, C.R. Haggart, J.W. Holmes, L. Terracio (2007) Tissue engineering of skeletal muscle. Tissue Eng 13: 2781-2790.
Yang, L., K.O. van der Werf, B.F. Koopman, V. Subramaniam, M.L. Bennink, P.J. Dijkstra, J. Feijen (2007) Micromechanical bending of single collagen fibrils using atomic force microscopy. J Biomed Mater Res A 82: 160-168.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.