Introduction: Cell therapies for generalized musculoskeletal diseases would require distribution of cells to all the skeletal tissues; however, there are controversies regarding the transplantability of multipotent mesenchymal stems cells (MSCs). We generated single-cell subpopulations of MSCs from murine bone marrow and assessed them for differences in trafficking through the circulatory system and engraftment in bone and other tissues. Materials and Methods: Seven single-cell clonal subpopulations were generated by serial dilution of GFP-marked MSCs isolated from bone marrow. The subpopulations were examined for putative MSC surface marker expression, in vitro differentiation toward osteogenic and adipogenic lineages, migration and engraftment in different tissues following intravenous delivery in normal, sublethally irradiated neonatal mice. Results: The surface marker expression profile revealed notable differences among clonal cells, specifically CD44 and CD105. All the cell subpopulations differentiated toward osteogenic and adipogenic lineages, with some committed to only one or the other. Two clones enriched in CXCR4 expression were highly efficient in migrating and engrafting in skeletal tissue including bone; this confirmed the role of this chemokine in cell migration. Donor cells retrieved from various tissues displayed different morphologies and potential differentiation into tissue cell type of engraftment, suggesting modification by the tissues in which the donor cells engrafted. Conclusion: We have reported that, within bone marrow, there are heterogeneous subpopulations of MSCs that may differ in their ability to migrate in the circulatory system and engraft in different tissues.

1.
Anjos-Afonso, F., E.K. Siapati, D. Bonnet (2004) In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 117(Pt 23): 5655-5664.
2.
Bhakta, S., P. Hong, O. Koc (2006) The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med 7: 19-24.
3.
Bianco, P., P.G. Robey, P.J. Simmons (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2: 313-319.
4.
Cancedda, R., P. Giannoni, M. Mastrogiacomo (2007) A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28: 4240-4250.
5.
Caplan, A.I. (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213: 341-347.
6.
Coombs, A. (2008) Stem cells for the heart, a new wave of clinical trials. Nat Reports Stem Cells Published online: 10 April 2008|doi:10.1038/stemcells 2008.55(55).
7.
Crisan, M., S. Yap, L. Casteilla, C.W. Chen, M. Corselli, T.S. Park, G. Andriolo, B. Sun, B. Zheng, L. Zhang, C. Norotte, P.N. Teng, J. Traas, R. Schugar, B.M. Deasy, S. Badylak, H.J. Buhring, J.P. Giacobino, L. Lazzari, J. Huard, B. Peault (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: 301-313.
8.
Djouad, F., C. Bouffi, S. Ghannam, D. Noel, C. Jorgensen (2009) Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 5: 392-399.
9.
Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317.
10.
Gambotto, A., G. Dworacki, V. Cicinnati, T. Kenniston, J. Steitz, T. Tuting, P.D. Robbins, A.B. DeLeo (2000) Immunogenicity of enhanced green fluorescent protein (EGFP) in BALB/c mice: identification of an H2-Kd-restricted CTL epitope. Gene Ther 7: 2036-2040.
11.
Gnecchi, M., P. Danieli, E. Cervio (2012) Mesenchymal stem cell therapy for heart disease. Vasc Pharmacol 57: 48-55.
12.
Gnecchi, M., H. He, O.D. Liang, L.G. Melo, F. Morello, H. Mu, N. Noiseux, L. Zhang, R.E. Pratt, J.S. Ingwall, V.J. Dzau (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11: 367-368.
13.
Gnecchi, M., H. He, L.G. Melo, N. Noiseaux, F. Morello, R.A. de Boer, L. Zhang, R.E. Pratt, V.J. Dzau, J.S. Ingwall (2009) Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells 27: 971-979.
14.
Gnecchi, M., Z. Zhang, A. Ni, V.J. Dzau (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103: 1204-1219.
15.
Guillot, P.V., O. Abass, J.H. Bassett, S.J. Shefelbine, G. Bou-Gharios, J. Chan, H. Kurata, G.R. Williams, J. Polak, N.M. Fisk (2008) Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 111: 1717-1725.
16.
Horwitz, E.M., P.L. Gordon, W.K. Koo, J.C. Marx, M.D. Neel, R.Y. McNall, L. Muul, T. Hofmann (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99: 8932-8937.
17.
Horwitz, E.M., D.J. Prockop, L.A. Fitzpatrick, W.W. Koo, P.L. Gordon, M. Neel, M. Sussman, P. Orchard, J.C. Marx, R.E. Pyeritz, M.K. Brenner (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5: 309-313.
18.
Houlihan, D.D., Y. Mabuchi, S. Morikawa, K. Niibe, D. Araki, S. Suzuki, H. Okano, Y. Matsuzaki (2012) Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat Protoc 7: 2103-2111.
19.
Kucia, M., J. Ratajczak, M.Z. Ratajczak (2005) Are bone marrow stem cells plastic or heterogenous - that is the question. Exp Hematol 33: 613-623.
20.
Kumar, S., S. Ponnazhagan (2007) Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J 21: 3917-3927.
21.
Laflamme, M.A., C.E. Murry (2011) Heart regeneration. Nature 473: 326-335.
22.
Li, F., X. Wang, C. Niyibizi (2007) Distribution of single-cell expanded marrow derived progenitors in a developing mouse model of osteogenesis imperfecta following systemic transplantation. Stem Cells 25: 3183-3193.
23.
Li, F., X. Wang, C. Niyibizi (2010) Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfecta. Bone 47: 546-555.
24.
Lien, C.Y., K. Chih-Yuan Ho, O.K. Lee, G.W. Blunn, Y. Su (2009) Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and CBFA-1 co-expressing mesenchymal stem cells. J Bone Miner Res 24: 837-848.
25.
Mabuchi, Y., D.D. Houlihan, C. Akazawa, H. Okano, Y. Matsuzaki (2013) Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int 2013: 507301.
26.
Maddox, J.R., K.D. Ludlow, F. Li, C. Niyibizi (2012) Breast and abdominal adipose multipotent mesenchymal stromal cells and stage-specific embryonic antigen 4 expression. Cells Tissues Organs 196: 107-116.
27.
Molyneaux, K.A., H. Zinszner, P.S. Kunwar, K. Schaible, J. Stebler, M.J. Sunshine, W. O'Brien, E. Raz, D. Littman, C. Wylie, R. Lehmann (2003) The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 130: 4279-4286.
28.
Ngo, H.T., X. Leleu, J. Lee, X. Jia, M. Melhem, J. Runnels, A.S. Moreau, N. Burwick, A.K. Azab, A. Roccaro, F. Azab, A. Sacco, M. Farag, R. Sackstein, I.M. Ghobrial (2008) SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenström macroglobulinemia. Blood 112: 150-158.
29.
Niyibizi, C., F. Li (2009) Potential implications of cell therapy for osteogenesis imperfecta. Int J Clin Rheumatol 4: 57-66.
30.
Niyibizi, C., S. Wang, Z. Mi, P.D. Robbins (2004) The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells. Mol Ther 9: 955-963.
31.
Panaroni, C., R. Gioia, A. Lupi, R. Besio, S.A. Goldstein, J. Kreider, S. Leikin, J.C. Vera, E.L. Mertz, E. Perilli, F. Baruffaldi, I. Villa, A. Farina, M. Casasco, G. Cetta, A. Rossi, A. Frattini, J.C. Marini, P. Vezzoni, A. Forlino (2009) In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 114: 459-468.
32.
Pereira, R.F., K.W. Halford, M.D. O'Hara, D.B. Leeper, B.P. Sokolov, M.D. Pollard, O. Bagasra, D.J. Prockop (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92: 4857-4861.
33.
Pereira, R.F., M.D. O'Hara, A.V. Laptev, K.W. Halford, M.D. Pollard, R. Class, D. Simon, K. Livezey, D.J. Prockop (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 95: 1142-1147.
34.
Phinney, D.G., G. Kopen, R.L. Isaacson, D.J. Prockop (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72: 570-585.
35.
Rostovskaya, M., K. Anastassiadis (2012) Differential expression of surface markers in mouse bone marrow mesenchymal stromal cell subpopulations with distinct lineage commitment. PLoS One 7: e51221.
36.
Ryan, M.C., L.J. Sandell (1990) Differential expression of a cysteine-rich domain in the amino-terminal propeptide of type II (cartilage) procollagen by alternative splicing of mRNA. J Biol Chem 265: 10334-10339.
37.
Sands, M.S., J.E. Barker (1999) Percutaneous intravenous injection in neonatal mice. Lab Anim Sci 49: 328-330.
38.
Simmons, P.J., D. Przepiorka, E.D. Thomas, B. Torok-Storb (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328: 429-432.
39.
Singh, S., U.P. Singh, W.E. Grizzle, J.W. Lillard Jr. (2004) CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest 84: 1666-1676.
40.
Uccelli, A., L. Moretta, V. Pistoia (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8: 726-736.
41.
Wang, L., Y. Liu, Z. Kalajzic, X. Jiang, D.W. Rowe (2005) Heterogeneity of engrafted bone-lining cells after systemic and local transplantation. Blood 106: 3650-3657.
42.
Wang, X., F. Li, C. Niyibizi (2006) Progenitors systemically transplanted into neonatal mice localize to areas of active bone formation in vivo: implications of cell therapy for skeletal diseases. Stem Cells 24: 1869-1878.
43.
Zhu, Y., A. McAlinden, L.J. Sandell (2001) Type IIA procollagen in development of the human intervertebral disc: regulated expression of the NH(2)-propeptide by enzymic processing reveals a unique developmental pathway. Dev Dyn 220: 350-362.
44.
Zitvogel, L., H. Tahara, Q. Cai, W.J. Storkus, G. Muller, S.F. Wolf, M. Gately, P.D. Robbins, M.T. Lotze (1994) Construction and characterization of retroviral vectors expressing biologically active human interleukin-12. Hum Gene Ther 5: 1493-1506.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.