Teeth develop within the surrounding periodontal tissues, involving the alveolar bone, periodontal ligament and cementum. The alveolar bone originates through the process of intramembranous ossification involving mesenchymal cells from the tooth germ. As most available data are related to endochondral ossification, we examined the molecular background of alveolar bone development. We investigated the osteogenic profile of mesenchymal cells dissected from mouse mandible slices at the stage of early alveolar bone formation. Relative monitoring of gene expression was undertaken using PCR Arrays; this included the profiles of 84 genes associated with osteogenesis. To examine the tooth-bone interface, stages with detectable changes in bone remodelling during development (E13.0, E14.0 and E15.0) were chosen and compared with each other. These results showed a statistically significant increase in the expression of the genes Fgf3, Ctsk, Icam-1, Mmp9, Itga3 and Tuft1, and of a wide range of collagens (Col1a2, Col3a1, Col7a1, Col12a1, Col14a1). Decreased expression was detected in the case of Col2a1, Sox9, Smad2 and Vegfb. To confirm these changes in gene expression, immunofluorescence analyses of Mmp9 and Sox9 proteins were performed in situ. Our research has identified several candidate genes that may be crucial for the initiation of alveolar bone formation and is the basis for further functional studies.

1.
Åberg, T., X.P. Wang, J.H. Kim, T. Yamashiro, M. Bei, R. Rice, H.M. Ryoo, I. Thesleff (2004) Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 270: 76-93.
2.
Akiyama, H., M.C. Chaboissier, J.F. Martin, A. Schedl, B. de Crombrugghe (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is requires for epression of Sox5 and Sox6. Genes Dev 16: 2813-2828.
3.
Alfaqeeh, S.A., M. Gaete, A.S. Tucker (2013) Interactions of the tooth and bone during development. J Dent Res 92: 1129-1135.
4.
Bi, W., J.M. Deng, Z. Zhang, R.R. Behringer, B. de Crombrugghe (1999) Sox9 is required for cartilage formation. Nat Genet 22: 85-89.
5.
Bell, D.M., K.K. Leung, S.C. Wheatley, L.J. Ng, S. Zhou, K.W. Ling, M.H. Sham, P. Koopman, P.P. Tam, K.S. Cheah (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16: 174-178.
6.
Dangaria, S.J., Y. Ito, X. Luan, T.G. Diekwisch (2011) Differentiation of neural-crest-derived intermediate pluripotent progenitors into committed periodontal populations involves unique molecular signature changes, cohort shifts, and epigenetic modifications. Stem Cells Dev 20: 39-52.
7.
de Sousa Lopes, S.M., R.L.C. Carvalho, S. van den Driesche, M.J. Goumans, P. ten Dijke, C.L. Mummery (2003) Distribution of phosphorylated Smad2 identifies target tissues of TGFβ ligands in mouse development. Gene Expr Patterns 3: 355-360.
8.
Deutsch, D., A. Palmon, L. Dafni, J. Catalano-Sherman, M.F. Young, L.W. Fisher (1995) The enamelin (tuftelin) gene. Int J Dev Biol 39: 135-143.
9.
Diekwisch, T.G. (2002) Pathways and fate of migratory cells during late tooth organogenesis. Connect Tissue Res 43: 245-256.
10.
Diekwisch, T.G., J. Ware, A.G. Fincham, M. Zeichner-David (1997) Immunohistochemical similarities and differences between amelogenin and tuftelin gene products during tooth development. J Histochem Cytochem 45: 859-866.
11.
Diep, L., E. Matalova, T.A. Mitsiadis, A.S. Tucker (2009) Contribution of the tooth bud mesenchyme to alveolar bone. J Exp Zool B Mol Dev Evol 312B: 510-517.
12.
Engsig, M.T., Q.J. Chen, T.H. Vu, A.C. Pedersen, B. Therkidsen, L.R. Lund, K. Henriksen, T. Lenhard, N.T. Foged, Z. Werb, J.M. Delaissé (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151: 879-889.
13.
Fleischmannova, J., E. Matalova, P.T. Sharpe, I. Misek, R.J. Radlanski (2010) Formation of the tooth-bone interface. J Dent Res 89: 108-115.
14.
Fleischmannova, J., E. Matalova, A.S. Tucker, P.T. Sharpe (2008) Mouse models of tooth abnormalities. Eur J Oral Sci 116: 1-10.
15.
Gelb, B.D., G.P. Shi, H.A. Chapman, R.J. Desnick (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273: 1236-1238.
16.
Hattori, T., C. Müller, S. Gebhard, E. Bauer, F. Pausch, B. Schlund, M.R. Bösl, A. Hess, C. Surmann-Schmitt, H. von der Mark, B. de Crombrugghe, K. von der Mark (2010) SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 137: 901-911.
17.
Helfrich, M.H. (2005) Osteoclast diseases and dental abnormalities. Arch Oral Biol 50: 115-122.
18.
Hirai, F., S. Nakayamada, Y. Okada, K. Saito, H. Kurose, A. Mogami, Y. Tanaka (2007) Small GTPase Rho signaling is involved in β1 integrin-mediated up-regulation of intercellular adhesion molekule 1 and receptor activator of nuclear factor κB ligand on osteoblasts and osteoclasts maturation. Biochem Biophys Res Commun 356: 279-285.
19.
Horta, B.A.C., A.C.R. Sodero, R.B. de Alencastro (2009) Investigating the differential activation of vascular endothelial growth factor (VEGF) receptors. 28: 289-296.
20.
Huang, W., U.I. Chung, H.M. Kronenberg, B. de Crombrugghe (2001) The chondrogenic transcription factor Sox9 is target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci USA 98: 160-165.
21.
Izu, Y., M. Sun, D. Zwolanek, G. Veit, V. Williams, B. Cha, K.J. Jepsen, M. Koch, D.E. Birk (2011) Type XII collagen regulates osteoblast polarity and communication during bone formation. J Cell Biol 193: 1115-1130.
22.
Jonkman, M.F., G. Moreno, F. Rouan, A.P. Oranje, L. Pulkkinen, J. Uitto (1999) Dominant dystrophic epidermolysis bullosa (Pasini) caused by a novel glycine substitution mutation in the type VII collagen gene (COL7A1). J Invest Dermatol 112: 815-817.
23.
Karimbux, N.Y., N.D. Rosenblum, I. Nishimura (1992) Site-specific expression of collagen I and XII mRNAs in the rat periodontal ligament at two developmental stages. J Dent Res 71: 1355-1362.
24.
Keene, D.R., G.P. Lunstrum, N.P. Morris, D.W. Stoddard, R.E. Burgeson (1991) Two type XII-like collagens localize to the surface of banded collagen fibrils. J Cell Biol 113: 971-978.
25.
Kettunen, P., J. Laurikkala, P. Itäranta, S. Vainio, N. Itoh, I. Thesleff (2000) Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 219: 322-332.
26.
Khetarpal, U., C.C. Morton (1993) COL1A2 and COL2A1 expression in temporal bone of lethal osteogenesis imperfecta. Arch Otolaryngol Head Neck Surg 119: 1305-1314.
27.
Kim, J.Y., S.W. Cho, H.J. Hwang, M.J. Lee, J.M. Lee, J. Cai, S.H. Choi, C.K. Kim, H.S. Jung (2007) Evidence for expansion-based temporal BMP4/NOGGIN interactions in specifying periodontium morphogenesis. Cell Tissue Res 330: 123-132.
28.
Li, S., S. Ge, P. Yang (2014) Immunohistochemical localization of connective tissue growth factor, transforming growth factor-beta1 and phosphorylated-smad2/3 in the developing periodontium of rats. J Periodont Res 49: 624-633.
29.
Littlewood-Evans, A., T. Kokubo, O. Ishibashi, T. Inaoka, B. Wlodarski, J.A. Gallagher, G. Bilbe (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20: 81-86.
30.
Lungova, V., M. Buchtova, E. Janeckova, A.S. Tucker, L. Knopfova, J. Smarda, E. Matalova (2012) Localization of c-MYB in differentiated cells during postnatal molar and alveolar bone development. Eur J Oral Sci 120: 495-504.
31.
Luo, W., X. Wen, H.J. Wang, M. MacDougall, M.L. Snead, M.L. Paine (2004) In vivo overexpression of tuftelin in the enamel organic matrix. Cells Tissues Organs 177: 212-220.
32.
Moon, S.J., I.E. Ahn, H. Jung, H. Yi, Y. Kim, S.K. Kwok, K.S. Park, J.K. Min, S.H. Park, H.Y. Kim, J.H. Ju (2013) Temporal differential effects of proinflammatory cytokines on osteoclastogenesis. Int J Mol Med 31: 769-777.
33.
Ornitz, D.M., P.J. Marie (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16: 1446-1465.
34.
Ponticos, M., D. Abraham, C. Alexakis, Q.L. Lu, C. Black, T. Partridge, G. Bou-Gharios (2004) Col1a2 enhancer regulates collagen activity during development and in adult tissue repair. Matrix Biol 22: 619-628.
35.
Radlanski, R.J., H. Renz, C.A. Zimmermann, R. Mey, E. Matalova (2015) Morphogenesis of the compartmentalizing bone around the molar primordia in the mouse mandible during dental developmental stages between lamina, bell-stage, and root formation (E13-P20). Ann Anat 200C: 1-12.
36.
Rice, D.P.C., H.J. Kim, I. Thesleff (1997) Detection of gelatinase B expression reveals osteoclastic bone resorption as a feature of early calvarial bone development. Bone 21: 479-486.
37.
Saftig, P., E. Hunziker, O. Wehmeyer, S. Jones, A. Boyde, W. Rommerskirch, J.D. Moritz, P. Schu, K. von Figura (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95: 13453-13458.
38.
Schuppan, D., M.C. Cantaluppi, J. Becker, A. Veit, T. Bunte, D. Troyer, F. Schuppan, M. Schmid, R. Ackermann, E.G. Hahn (1990) Undulin, an extracellular matrix glycoprotein associated with collagen fibrils. J Biol Chem 265: 8823-8832.
39.
Sugrue, S.P., M.K. Gordon, J. Seyer, B. Dublet, M. van der Rest, B.R. Olsen (1989) Immunoidentification of type XII collagen in embryonic tissues. J Cell Biol 109: 939-945.
40.
Sununliganon, L., W. Singhatanadgit (2012) Highly osteogenic PDL stem cell clones specifically express elevated levels of ICAM1, ITGB1 and TERT. Cytotechnology 64: 53-63.
41.
Suzuki, T., N. Suda, K. Ohyama (2004) Osteoclastogenesis during mouse tooth germ development is mediated by receptor activator of NFK-B ligand (RANKL). J Bone Miner Metab 22: 185-191.
42.
Talts, J.F., A. Pfeifer, F. Hofmann, E.B. Hunziker, X.H. Zhou, A. Aszódi, R. Fässler (1998) Endochondral ossification is dependent on the mechanical properties of cartilage tissue and on intracellular signals in chondrocytes. Ann NY Acad Sci 857: 74-85.
43.
Tanaka, Y., S. Mine, T. Hanagiri, T. Hiraga, I. Morimoto, C.G. Figdor, Y. van Kooyk, H. Ozawa, T. Nakamura, K. Yasumoto, S. Eto (1998) Constitutive up-regulation of integrin-mediated adhesion of tumor-infiltrating lymphocytes to osteoblasts and bone marrow-derived stromal cells. Cancer Res 58: 4138-4145.
44.
Tucker, A.S., P.T. Sharpe (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5: 499-508.
45.
Volk, S.W., S.R. Shah, A.J. Cohen, Y. Wang, B.K. Brisson, L.K. Vogel, K.D. Hankenson, S.L. Adams (2014) Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone. Calcif Tissue Int 94: 621-631.
46.
Vu, T.H., J.M. Shipley, G. Bergers, J.E. Berger, J.A. Helms, D. Hanahan, S.D. Shapiro, R.M. Senior, Z. Werb (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93: 411-422.
47.
Yamashiro, T., X.P. Wang, Z. Li, S. Oya, T. Aberg, T. Fukunaga, H. Kamioka, N.A. Speck, T. Takano-Yamamoto, I. Thesleff (2004) Possible roles of Runx1 and Sox9 in incipient intramembranous ossification. J Bone Miner Res 19: 1671-1677.
48.
Zhao, Q., H. Eberspaecher, V. Lefebvre, B. De Crombrugghe (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 209: 377-386.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.