Background: Mesenchymal stem cells (MSCs) have great promise in the field of regenerative medicine due to their differentiation potential into several lineages. Besides the bone marrow, MSCs can be obtained from the dermis, which represents a large stem cell reservoir in the skin. Sheep provide an appropriate large animal model for preclinical studies. In this study, we focused on the isolation and characterization of MSCs from sheep dermis as an alternative to bone marrow MSCs (bmMSCs). Methods: Primary ovine cells were obtained from the dermis for comparison with bone marrow. CD271+/45- dermal MSCs (CD271-dMSCs), which were sorted by flow cytometry, and plastic-adherent bmMSCs were examined for morphology, proliferation and senescence-associated β-galactosidase activity in both low and high oxygen conditions. CD271 expression on cultured cells was assessed by flow cytometry. Adipogenic and osteogenic potentials of CD271-dMSCs were evaluated by oil red O and von Kossa staining. Chondrogenic capacity of CD271-dMSCs and CD271+/CD45- bone marrow cells (CD271-bmMSCs) was detected using immunohistochemistry and measurement of sulfated glycosaminoglycans. Results: The cell proliferation assay demonstrated no significant difference between CD271-dMSCs and bmMSCs under low oxygen conditions. Cultured CD271-dMSCs revealed much more CD271 expression compared to CD271-bmMSCs. CD271-dMSCs and CD271-bmMSCs showed basically similar expression of the cartilage-specific proteins aggrecan and collagen type II, although with a stronger staining in CD271-bmMSC-derived cultures. Remarkably, there was co-expression of CD271 and aggrecan during chondrogenic differentiation, suggesting an involvement of CD271 in chondrogenesis. Conclusion: Based on these findings, CD271-dMSCs might serve as an appropriate alternative cell source in preclinical research.

Barry, F., R.E. Boynton, B. Liu, J.M. Murphy (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268: 189-200.
Bühring, H.-J., V.L. Battula, S. Treml, B. Schewe, L. Kanz, W. Vogel (2007) Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 1106: 262-271.
Caneva, L., D. Soligo, G. Cattoretti, E. de Harven, G.L. Deliliers (1995) Immuno-electron microscopy characterization of human bone marrow stromal cells with anti-NGFR antibodies. Blood Cells Mol Dis 21: 73-85.
Caplan, A.I., S.P. Bruder (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7: 259-264.
Cuthbert, R., S.A. Boxall, H.B. Tan, P.V. Giannoudis, D. McGonagle, E. Jones (2012) Single-platform quality control assay to quantify multipotential stromal cells in bone marrow aspirates prior to bulk manufacture or direct therapeutic use. Cytotherapy 14: 431-440.
Dimri, G.P., X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E.E. Medrano, M. Linskens, I. Rubelj, O. Pereira-Smith (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363-9367.
D'Ippolito, G., S. Diabira, G.A. Howard, B.A. Roos, P.C. Schiller (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39: 513-522.
Flores-Torales, E., A. Orozco-Barocio, O.R. Gonzalez-Ramella, A. Carrasco-Yalan, K. Gazarian, S. Cuneo-Pareto (2010) The CD271 expression could be alone for establisher phenotypic marker in bone marrow derived mesenchymal stem cells. Folia Histochem Cytobiol 48: 682-686.
Gigante, A., C. Bevilacqua, A. Pagnotta, S. Manzotti, A. Toesca, F. Greco (2003) Expression of NGF, Trka and p75 in human cartilage. Eur J Histochem 47: 339-344.
Grayson, W.L., F. Zhao, B. Bunnell, T. Ma (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358: 948-953.
Guo, X., C. Wang, C. Duan, M. Descamps, Q. Zhao, L. Dong, S. Lü, K. Anselme, J. Lu, Y.Q. Song (2004) Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Eng 10: 1830-1840.
Hepp, P., G. Osterhoff, M. Niederhagen, B. Marquass, T. Aigner, A. Bader, C. Josten, R. Schulz (2009) Perilesional changes of focal osteochondral defects in an ovine model and their relevance to human osteochondral injuries. J Bone Joint Surg Br 91: 1110-1119.
Hermida-Gómez, T., I. Fuentes-Boquete, M.J. Gimeno-Longas, E. Muiños-López, S. Díaz-Prado, F.J. de Toro, F.J. Blanco (2011) Bone marrow cells immunomagnetically selected for CD271+ antigen promote in vitro the repair of articular cartilage defects. Tissue Eng 17: 1169-1179.
Ho, A.D., W. Wagner, W. Franke (2008) Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10: 320-330.
Iwata, Y., H. Akamatsu, S. Hasegawa, M. Takahashi, A. Yagami, S. Nakata, K. Matsunaga (2013) The epidermal integrin beta-1 and p75NTR positive cells proliferating and migrating during wound healing produce various growth factors, while the expression of p75NTR is decreased in patients with chronic skin ulcers. J Dermatol Sci 71: 122-129.
Jiang, Y., B.N. Jahagirdar, R.L. Reinhardt, R.E. Schwartz, C.D. Keene, X.R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W.C. Low, D.A. Largaespada, C.M. Verfaillie (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41-49.
Jones, E., D. McGonagle (2008) Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford) 47: 126-131.
Jones, E.A., A. English, S.E. Kinsey, L. Straszynski, P. Emery, F. Ponchel, D. McGonagle (2006) Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom 70: 391-399.
Junker, J.P., P. Sommar, M. Skog, H. Johnson, G. Kratz (2010) Adipogenic, chondrogenic and osteogenic differentiation of clonally derived human dermal fibroblasts. Cells Tissues Organs 191: 105-118.
Klein, J.D., C.G.B. Turner, S.A. Steigman, A. Ahmed, D. Zurakowski, E. Eriksson, D.O. Fauza (2011) Amniotic mesenchymal stem cells enhance normal fetal wound healing. Stem Cells Dev 20: 969-976.
Kode, J.A., S. Mukherjee, M.V. Joglekar, A.A. Hardikar (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11: 377-391.
Kuçi, Z., S. Kuçi, S. Zircher, S. Koller, R. Schubert, H. Bönig, R. Henschler, R. Lieberz, T. Klingebiel, P. Bader (2011) Mesenchymal stromal cells derived from CD271(+) bone marrow mononuclear cells exert potent allosuppressive properties. Cytotherapy 13: 1193-1204.
Lennon, D.P., J.M. Edmison, A.I. Caplan (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187: 345-355.
Liang, Y., J.A. Marcusson, O. Johansson (1999) Light and electron microscopic immunohistochemical observations of p75 nerve growth factor receptor-immunoreactive dermal nerves in prurigo nodularis. Arch Dermatol Res 291: 14-21.
Lorenz, K., M. Sicker, E. Schmelzer, T. Rupf, J. Salvetter, M. Schulz-Siegmund, A. Bader (2008) Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol 17: 925-932.
Lu, Y., M.D. Markel, C. Swain, L.D. Kaplan (2006) Development of partial thickness articular cartilage injury in an ovine model. J Orthop Res 24: 1974-1982.
Ma, T., W.L. Grayson, M. Fröhlich, G. Vunjak-Novakovic (2009) Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog 25: 32-42.
Maier, A.B., R.G.J. Westendorp, D. van Heemst (2007) Beta-galactosidase activity as a biomarker of replicative senescence during the course of human fibroblast cultures. Ann NY Acad Sci 1100: 323-332.
Maxson, S., E.A. Lopez, D. Yoo, A. Danilkovitch-Miagkova, M.A. Leroux (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Trans Med 1: 142-149.
Mifune, Y., T. Matsumoto, S. Murasawa, A. Kawamoto, R. Kuroda, T. Shoji, T. Kuroda, T. Fukui, Y. Kawakami, M. Kurosaka, T. Asahara (2013) Therapeutic superiority for cartilage repair by CD271-positive marrow stromal cell transplantation. Cell Transplant 22: 1201-1211.
Mikami, Y., Y. Ishii, N. Watanabe, T. Shirakawa, S. Suzuki, S. Irie, K. Isokawa, M.J. Honda (2011) CD271/p75(NTR) inhibits the differentiation of mesenchymal stem cells into osteogenic, adipogenic, chondrogenic, and myogenic lineages. Stem Cells Dev 20: 901-913.
Mizuno, S., J. Glowacki (2005) Low oxygen tension enhances chondroinduction by demineralized bone matrix in human dermal fibroblasts in vitro. Cells Tissues Organs 180: 151-158.
Mrugala, D., C. Bony, N. Neves, L. Caillot, S. Fabre, D. Moukoko, C. Jorgensen, D. Noël (2008) Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis 67: 288-295.
Murphy, C.L., J.M. Polak (2004) Control of human articular chondrocyte differentiation by reduced oxygen tension. J Cell Physiol 199: 451-459.
Perry, T.E., S. Kaushal, F.W.H. Sutherland, K.J. Guleserian, J. Bischoff, M. Sacks, J.E. Mayer (2003) Thoracic Surgery Directors Association Award. Bone marrow as a cell source for tissue engineering heart valves. Ann Thorac Surg 75: 761-7.
Pittenger, M.F., A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
Prockop, D.J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71-74.
Quirici, N., C. Scavullo, L. de Girolamo, S. Lopa, E. Arrigoni, G.L. Deliliers, A.T. Brini (2010) Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells Dev 19: 915-925.
Quirici, N., D. Soligo, P. Bossolasco, F. Servida, C. Lumini, G.L. Deliliers (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30: 783-791.
Ren, H., Y. Cao, Q. Zhao, J. Li, C. Zhou, L. Liao, M. Jia, Q. Zhao, H. Cai, Z.C. Han, R. Yang, G. Chen, R.C. Zhao (2006) Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem Biophys Res Commun 347: 12-21.
Rentsch, C., R. Hess, B. Rentsch, A. Hofmann, S. Manthey, D. Scharnweber, A. Biewener, H. Zwipp (2010) Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds. In Vitro Cell Dev Biol Anim 46: 624-634.
Rozemuller, H., H.-J. Prins, B. Naaijkens, J. Staal, H.-J. Bühring, A.C. Martens (2010) Prospective isolation of mesenchymal stem cells from multiple mammalian species using cross-reacting anti-human monoclonal antibodies. Stem Cells Dev 19: 1911-1921.
Sacchetti, B., A. Funari, S. Michienzi, S. Di Cesare, S. Piersanti, I. Saggio, E. Tagliafico, S. Ferrari, P.G. Robey, M. Riminucci, P. Bianco (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131: 324-336.
Scheerlinck, J.-P.Y., K.J. Snibson, V.M. Bowles, P. Sutton (2008) Biomedical applications of sheep models: from asthma to vaccines. Trends Biotechnol 26: 259-266.
Stenderup, K., J. Justesen, C. Clausen, M. Kassem (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33: 919-926.
Stock, U.A., J.P. Vacanti (2001) Tissue engineering: current state and prospects. Annu Rev Med 52: 443-451.
Thomson, T.M., W.J. Rettig, P.G. Chesa, S.H. Green, A.C. Mena, L.J. Old (1988) Expression of human nerve growth factor receptor on cells derived from all three germ layers. Exp Cell Res 174: 533-539.
Toma, J.G., M. Akhavan, K.J. Fernandes, F. Barnabé-Heider, A. Sadikot, D.R. Kaplan, F.D. Miller (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3: 778-784.
Toma, J.G., I.A. McKenzie, D. Bagli, F.D. Miller (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23: 727-737.
Tormin, A., O. Li, J.C. Brune, S. Walsh, B. Schütz, M. Ehinger, N. Ditzel, M. Kassem, S. Scheding (2011) CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117: 5067-5077.
Tsatmali, M., J. Ancans, A.J. Thody (2002) Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 50: 125-133.
Vaculik, C., C. Schuster, W. Bauer, N. Iram, K. Pfisterer, G. Kramer, A. Reinisch, D. Strunk, A. Elbe-Bürger (2011) Human dermis harbors distinct mesenchymal stromal cell subsets. J Investig Dermatol 132: 563-574.
Wakitani, S., T. Saito, A.I. Caplan (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18: 1417-1426.
Watson, J.T., T. Foo, J. Wu, B.R. Moed, M. Thorpe, L. Schon, Z. Zhang (2013) CD271 as a marker for mesenchymal stem cells in bone marrow versus umbilical cord blood. Cells Tissues Organs 197: 496-504.
Zscharnack, M., C. Poesel, J. Galle, A. Bader (2009) Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel. Cells Tissues Organs 190: 81-93.
Zscharnack, M., P. Hepp, R. Richter, T. Aigner, R. Schulz, J. Somerson, C. Josten, A. Bader, B. Marquass (2010) Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model. Am J Sports Med 38: 1857-1869.
Zuk, P.A., M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211-228.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.