Dental enamel covers the crown of the vertebrate tooth and is considered to be the hardest tissue in the body. Enamel develops during secretion of an extracellular matrix by ameloblast cells in the tooth germ, prior to eruption of the tooth into the oral cavity. Secreted enamel proteins direct mineralization patterns during the maturation stage of amelogenesis as the tooth prepares to erupt. The amelogenins are the most abundant enamel proteins and are required for normal enamel development. Phenotypic differences were observed between incisors from individual Amelx (amelogenin) null mice that had a mixed 129xC57BL/6J genetic background and between inbred wild-type (WT) mice with different genetic backgrounds (C57BL/6J, C3H/HeJ, FVB/NJ). We hypothesized that this could be due to modifier genes, as human patients with a mutation in an enamel protein gene causing the enamel defect amelogenesis imperfecta (AI) can also have varied appearance of dentitions within a kindred. Enamel density measurements varied for all WT inbred strains midway during incisor development. Enamel thickness varied between some WT strains, and, unexpectedly, dentin density varied extensively between incisors and molars of all WT and Amelx null strains studied. WTFVB/NJ incisors were more similar to those of Amelx null mice than to those of the other WT strains in terms of incisor height/width ratio and pattern of enamel mineralization. Strain-specific differences led to the conclusion that modifier genes may be implicated in determining both normal development and severity of enamel appearance in AI mouse models and may in future studies be related to phenotypic heterogeneity within human AI kindreds reported in the literature.

1.
Aldred, M.J., P.J.M. Crawford, E. Roberts, C.M. Gillespie, N.S.T. Thomas, I. Fenton, L.A. Sandkuul, P.S. Harper (1992) Genetic heterogeneity in X-linked amelogenesis imperfecta. Genomics 14: 567-573.
2.
Backman, B., G. Holmgren (1988) Amelogenesis imperfecta: a genetic study. Hum Hered 38: 189-206.
3.
Bandiera, S., E. Hatem, M.S. Lyonnet, A. Henrion-Caude (2010) microRNAs in diseases: from candidate to modifier genes. Clin Genet 77: 306-313.
4.
Bartlett, J.D. (2013) Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent 2013: 684607.
5.
Beamer, W.G., L.R. Donahue, C.J. Rosen (2002) Genetics and bone. Using the mouse to understand man. J Musculoskelet Neuronal Interact 2: 225-231.
6.
Bei, M. (2009) Molecular genetics of ameloblast cell lineage. J Exp Zool B Mol Dev Evol 312B: 437-444.
7.
Boyde, A. (1969) Electron microscopic observations relating to the nature and development of prism decussation in mammalian dental enamel. Bull Group Int Rech Sci Stomatol 12: 151-207.
8.
Buchner, D.A., M. Trudeau, M.H. Meisler (2003) SCNM1, a putative RNA splicing factor that modifies disease severity in mice. Science 301: 967-969.
9.
Darling, A.I. (1956) Some observations on amelogenesis imperfecta and calcification of the dental enamel. Proc Royal Soc Med 49: 39-45.
10.
El-Sayed, W., D.A. Parry, R.C. Shore, M. Ahmed, H. Jafri, Y. Rashid, S. Al-Bahlani, A. Al Harasi, J. Kirkham, C.F. Inglehearn, A.J. Mighell (2009) Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta. Am J Hum Genet 85: 699-705.
11.
Everett, E. (2011) Fluoride's effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90: 552-560.
12.
Everett, E.T., M.A.K. McHenry, N. Reynolds, H. Eggertsson, J. Sullivan, C. Kantmann, E.A. Martinez-Mier, J.M. Warrick, G.K. Stookey (2002) Dental fluorosis: variability among different inbred mouse strains. J Dent Res 81: 794-798.
13.
Genin, E., J. Feingold, F. Clerget-Darpoux (2008) Identifying modifier genes of monogenic disease: strategies and difficulties. Hum Genet 124: 357-368.
14.
Gibson, C.W., Y. Li, C. Suggs, M.A. Kuehl, M.K. Pugach, A.B. Kulkarni, J.T. Wright (2011) Rescue of the murine amelogenin null phenotype with two amelogenin transgenes. Eur J Oral Sci 119(suppl 1): 70-74.
15.
Gibson, C.W., Z.A. Yuan, B. Hall, G. Longenecker, E. Chen, T. Thyagarajan, T. Sreenath, J.T. Wright, S. Decker, R. Piddington, G. Harrison, A.B. Kulkarni (2001) Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 276: 31871-31875.
16.
Haldane, J.B.S. (1941) The relative importance of principal and modifying genes in determining some human diseases. J Genet 41: 149-157.
17.
Hamilton, B.A., B.D. Yu (2012) Modifier genes and the plasticity of genetic networks in mice. PLoS Genet 8: e1002644.
18.
Hart, P.S., T.C. Hart, M.D. Michalec, O.H. Ryu, D. Simmons, S. Hong, J.T. Wright (2004) Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet 41: 545-549.
19.
He, L.H., M.V. Swain (2008) Understanding the mechanical behavior of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater 1: 18-29.
20.
Hu, J.C.C., Y. Hu, C.E. Smith, M.D. McKee, J.T. Wright, Y. Yamakoshi, P. Papagerakis, G.K. Hunter, J.Q. Feng, F. Yamakoshi, J.P. Simmer (2008) Enamel defects and ameloblast-specific expression in Enam knock-out/lacZ knock-in mice. J Biol Chem 283: 10858-10871.
21.
Kim, J.W., F. Seymen, K.E. Lee, J. Ko, M. Yildirim, E.B. Tuna, K. Gencay, T.J. Shin, H.K. Kyun, J.P. Simmer, J.C.C. Hu (2013) LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta. J Dent Res 92: 899-904.
22.
Kim, J.W., J.P. Simmer, T.C. Hart, P.S. Hart, M.D. Ramaswami, J.D. Bartlett, J.C.C. Hu (2005) MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J Med Genet 42: 271-275.
23.
Lagerstrom, M., N. Dahl, Y. Nakahori, Y. Nakagome, B. Backman, U. Landegren, U. Pettersson (1991) A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 10: 971-975.
24.
Lee, S.-K., J.C.C. Hu, J.D. Bartlett, K.-E. Lee, B.P.-J. Lin, J.P. Simmer, J.W. Kim (2008) Mutational spectrum of FAM83H: the C-terminal portion is required for tooth enamel calcification. Hum Mutat 29: E95-E99.
25.
Lench, N.J., A.H. Brook, G.B. Winter (1994) SSCP detection of a nonsense mutation in exon 5 of the amelogenin gene (AMG) causing X-linked amelogenesis imperfecta (AIH1). Hum Mol Genet 3: 827-828.
26.
Lench, N.J., G.B. Winter (1995) Characterisation of molecular defects in X-linked amelogenesis imperfecta (AIH1). Hum Mutat 5: 251-259.
27.
Li, Y., C. Suggs, J.T. Wright, Z.A. Yuan, M. Aragon, H. Fong, D. Simmons B. Daly, E.E. Golub, G. Harrison, A.B. Kulkarni, C.W. Gibson (2008) Partial rescue of the amelogenin null dental enamel phenotype. J Biol Chem 283: 15056-15062.
28.
Linder, C.C. (2006) Genetic variables that influence phenotype. ILAR J 47: 132-140.
29.
Markovic, D., B. Petrovic, T. Peric (2010) Case series: clinical findings and oral rehabilitation of patients with amelogenesis imperfecta. Eur Arch Paediatr Dent 11: 201-208.
30.
Mousny, M., X. Banse, L. Wise, E.T. Everett, R. Hancock, R. Vieth, J.P. Devogelaer, M.D. Grynpas (2006) The genetic influence on bone susceptibility to fluoride. Bone 39: 1283-1289.
31.
Nadeau, J.H. (2001) Modifier genes in mice and humans. Nat Rev Genet 2: 165-174.
32.
Nadeau, J.H. (2003) Modifier genes and protective alleles in humans and mice. Curr Opin Genet Dev 13: 290-295.
33.
Nusier, M., O. Yassin, T.C. Hart, A. Samimi, J.T. Wright (2004) Phenotypic diversity and revision of the nomenclature for autosomal recessive amelogenesis imperfecta. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97: 220-230.
34.
Ozdemir, D., P.S. Hart, O.H. Ryu, S.J. Choi, M. Ozdemir-Karatas, E. Firatli, N. Piesco, T.C. Hart (2005) MMP20 active-site mutation in hypomaturation amelogenesis imperfecta. J Dent Res 84: 1031-1035.
35.
Parry, D.A., S.J. Brookes, C.V. Logan, J.A. Poulter, W. El-Sayed, S. Al-Bahlani, S. Al Harasi, J. Sayed, M. Raif el, R.C. Shore, M. Dashash, M. Barron, J.E. Morgan, I.M. Carr, G.R. Taylor, C.A. Johnson, M.J. Aldred, M.J. Dixon, J.T. Wright, J. Kirkham, C.F. Inglehearn, A.J. Mighell (2012) Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfects. Am J Hum Genet 91: 565-571.
36.
Pugach, M.K., Y. Li, C. Suggs, J.T. Wright, M.A. Aragon, Z.A. Yuan, D. Simmons, A.B. Kulkarni, C.W. Gibson (2010) The amelogenin C-terminus is required for enamel development. J Dent Res 89: 165-169.
37.
Pugach, M.K., C. Suggs, Y. Li, J.T. Wright, A.B. Kulkarni, J.D. Bartlett, C.W. Gibson (2013) M180 amelogenin processed by MMP20 is sufficient for decussating murine enamel. J Dent Res 92: 1118-1122.
38.
Rajpar, M.H., K. Harley, C. Laing, R.M. Davies, M.J. Dixon (2001) Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta. Hum Mol Genet 10: 1673-1677.
39.
Rao, S., C.J. Witkop, Jr. (1971) Inherited defects in tooth structure. Birth Defects Orig Artic Ser 7: 153-184.
40.
Rasband, W.S. (1997-2012) Image J. Bethesda, US National Institutes of Health. http://imageJ.nih.gov/ij/.
41.
Sacca, R., B. Elder, K. Wasson (2013) The C57BL/6 mouse. White Paper. Charles River Laboratories International. http://www.criver.com/files/pdfs/rms/c57bl6/rm_rm_r_c57bl6_white_paper.aspx.
42.
Slavkin, H.C., M. Zeichner-David, M. MacDougall, C. Bessem, P. Bringas, L.S. Honig, J. Lussky, J. Vides (1982) Enamel gene products during murine amelogenesis in vivo and in vitro. J Dent Res Spec No: 1467-1471.
43.
Sultzer, B.M. (1968) Genetic control of leukocyte responses to endotoxin. Nature 219: 1253-1254.
44.
Taft, R.A., M. Davisson, M.V. Wiles (2006) Know thy mouse. Trends Genet 22: 649-653.
45.
Taketo, M., A.C. Schroeder, L.E. Mobraaten, K.B. Gunning, G. Hanten, R.R. Fox, T.H. Roderick, C.L. Stewart, F. Lilly, C.T. Hansen, P.A. Overbeek (1991) FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci USA 88: 2065-2069.
46.
Tang, Y., K.S. Lee, H,T. Yang, D.W. Logan, S. Wang, M.L. McKinnon, L.J. Holt, A. Condie, M.T. Luu, R.J. Akhurst (2005) Epistatic interactions between modifier genes confer strain-specific redundancy for Tgfb1 in developmental angiogenesis. Genomics 85: 60-70.
47.
Wade, C.M., M.J. Daly (2005) Genetic variation in laboratory mice. Nat Genet 37: 1175-1180.
48.
Wergedal, J.E., M.H-C. Sheng, C.L. Ackert-Bicknell, W.G. Beamer, D.J. Baylink (2005) Genetic variation in femur extrinsic strength in 29 different inbred strains of mice is dependent on variations in femur cross-sectional geometry and bone density. Bone 36: 111-122.
49.
Witkop, C.J., J.J. Sauk (1971) Dental and Oral Manifestations of Hereditary Disease. New York, American Academy of Oral Pathology.
50.
Witkop, C.J., J.J. Sauk (1976) Heritable defects of enamel; in Stewart, R.E., G.H. Prescott (eds): Oral Facial Genetics. St. Louis, Mosby, pp 151-226.
51.
Wright, J.T., J.D. Fine, L.B. Johnson (1993) Development defects of enamel in humans with hereditary epidermolysis bullosa. Arch Oral Biol 38: 945-955.
52.
Wright, J.T., S. Frazier-Bowers, D. Simmons, K. Alexander, P. Crawford, S.T. Han, P.S. Hart, T.C. Hart (2009a) Phenotypic variation in FAM83H-associated amelogenesis imperfecta. J Dent Res 88: 356-360.
53.
Wright, J.T., P.S. Hart, M.J. Aldred, K. Seow, P.J. Crawford, S.P. Hong, C.W. Gibson, T.C. Hart (2003) Relationship of phenotype and genotype in X-linked amelogenesis imperfecta. Connect Tissue Res 44(suppl 1): 72-78.
54.
Wright, J.T., T.C. Hart, P.S. Hart, D. Simmons, C. Suggs, B. Daley, J. Simmer, J. Hu, J.D. Bartlett, Y. Li, Z.A. Yuan, W.K. Seow, C.W. Gibson (2009b) Human and mouse enamel phenotypes resulting from mutation or altered expression of AMEL, ENAM, MMP20 and KLK4. Cells Tissues Organs 189: 224-229.
55.
Wright, J.T., K. Kula, K. Hall, J.H. Simmons, T.C. Hart (1997) Analysis of the tricho-dento-osseous syndrome genotype and phenotype. Am J Med Genet 72: 197-204.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.