Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could potentially be used to repair injured cartilage in diseases such as osteoarthritis (OA). In this study we used bone marrow, adipose tissue from articular and subcutaneous locations, and synovial fluid samples from 18 patients with knee OA to find a suitable alternative source for the isolation of MSCs with high chondrogenic potential. MSCs from all tissues analysed had a fibroblastic morphology, but their rates of proliferation varied. Subcutaneous fat-derived MSCs proliferated faster than bone marrow- and Hoffa’s fat pad-derived MSCs, while synovial fluid-derived MSCs grew more slowly. CD36 and CD54 expression was similar across all groups of MSCs with several minor differences. High expression of these surface markers in subcutaneous fat-derived MSCs was correlated with poor differentiation into hyaline cartilage. Synovial fluid-derived MSCs presented a relatively small chondrogenic differentiation capacity while Hoffa’s fat pad-derived MSCs had strong chondrogenic potential. In conclusion, MSCs from elderly patients with OA may still display significant chondrogenic potential, depending on their origin.

1.
Astori, G., F. Vignati, S. Bardelli, M. Tubio, M. Gola, V. Albertini, F. Bambi, G. Scali, D. Castelli, V. Rasini, G. Soldati, T. Moccetti (2007) ‘In vitro’ and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med 5: 55.
2.
Barry, F., J. Murphy (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36: 568–584.
3.
Bergman, R., D. Gazit, A. Kahn, H. Gruber, S. McDougall, T. Hahn (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11: 568–577.
4.
Bühring, H., V. Battula, S. Treml, B. Schewe, L. Kanz, W. Vogel (2007) Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 1106: 262–271.
5.
Caplan, A. (1991) Mesenchymal stem cells. J Orthop Res 9: 641–650.
6.
De Bari, C., F. Dell’Accio, P. Tylzanowski, F.P. Luyten (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44: 1928–1942.
7.
De Bari, C., F. Dell’Accio, J. Vanlauwe, J. Eyckmans, I. Khan, C. Archer, E. Jones, D. Mc Gonagle, T. Mitsiadis, C. Pitzalis, F. Luyten (2006) Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54: 1209–1221.
8.
De Ugarte, D., Z. Alfonso, P. Zuk, A. Elbarbary, M. Zhu, P. Ashjian, P. Benhaim, M. Hedrick, J. Fraser (2003) Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89: 267–270.
9.
Digirolamo, C., D. Stokes, D. Colter, D. Phinney, R. Class, D. Prockop (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107: 275–281.
10.
D’Ippolito, G., P. Schiller, C. Ricordi, B. Roos, G. Howard (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14: 1115–1122.
11.
Djouad, F., V. Fritz, F. Apparailly, P. Louis-Plence, C. Bony, J. Sany, C. Jorgensen, D. Noël (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum 52: 1595–1603.
12.
Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz (2006) Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317.
13.
English, A., E. Jones, D. Corscadden, K. Henshaw, T. Chapman, P. Emery, D. McGonagle (2007) A comparative assessment of cartilage and joint fat pad as a potential source of cells for autologous therapy development in knee osteoarthritis. Rheumatology (Oxford) 46: 1676–1683.
14.
Erices, A., P. Conget, J. Minguell (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109: 235–242.
15.
Friedenstein, A. (1980) Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus 25: 19–29.
16.
Friedenstein, A., R. Chailakhjan, K.S. Lalykina (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3: 393–403.
17.
Fukuchi, Y., H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, K. Tsuji (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22: 649–658.
18.
Gangenahalli, G., V. Singh, Y. Verma, P. Gupta, R. Sharma, R. Chandra, P. Luthra (2006) Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells Dev 15: 305–313.
19.
García-Álvarez, F., E. Alegre-Aguarón, P. Desportes, M. Royo-Cañas, T. Castiella, L. Larrad, M.J. Martínez-Lorenzo (2011) Chondrogenic differentiation in femoral bone marrow-derived mesenchymal cells (MSC) from elderly patients suffering osteoarthritis or femoral fracture. Arch Gerontol Geriatr 52: 239–242.
20.
Grogan, S., A. Barbero, J. Diaz-Romero, A. Cleton-Jansen, S. Soeder, R. Whiteside, P. Hogendoorn, J. Farhadi, T. Aigner, I. Martin, P. Mainil-Varlet (2007) Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis Rheum 56: 586–595.
21.
Grogan, S., A. Barbero, V. Winkelmann, F. Rieser, J.S. Fitzsimmons, S. O’Driscoll, I. Martin, P. Mainil-Varlet (2006) Visual histological grading system for the evaluation of in vitro-generated neocartilage. Tissue Eng 12: 2141–2149.
22.
Gronthos, S., D. Franklin, H. Leddy, P. Robey, R. Storms, J. Gimble (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189: 54–63.
23.
Hanson, S., J. Kim, B. Johnson, B. Bradley, M. Breunig, P. Hematti, S. Thibeault (2010) Characterization of mesenchymal stem cells from human vocal fold fibroblasts. Laryngoscope 120: 546–551.
24.
Horwitz, E., D. Prockop, L.A. Fitzpatrick, W.W. Koo, P.L. Gordon, M. Neel, M. Sussman, P. Orchard, J.C. Marx, R.E. Pyeritz, M.K. Brenner (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5: 309–313.
25.
Huang, J., N. Kazmi, M. Durbhakula, T. Hering, J. Yoo, B. Johnstone (2005) Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res 23: 1383–1389.
26.
Im, G., Y. Shin, K.B. Lee (2005) Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 13: 845–853.
27.
Johnstone, B., T. Hering, A.I. Caplan, V.M. Goldberg, J.U. Yoo (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238: 265–272.
28.
Jones, E., A. English, K. Henshaw, S. Kinsey, A. Markham, P. Emery, D. McGonagle (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 50: 817–827.
29.
Jones, E., S. Kinsey, A. English, R.A. Jones, L. Straszynski, D.M. Meredith, A.F. Markham, A. Jack, P. Emery, D. McGonagle (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46: 3349–3360.
30.
Kronenwett, R., S. Martin, R. Haas (2000) The role of cytokines and adhesion molecules for mobilization of peripheral blood stem cells. Stem Cells 18: 320–330.
31.
Lansdorp, P., W. Dragowska, T. Thomas, M. Little, H. Mayani (1994) Age-related decline in proliferative potential of purified stem cell candidates. Blood Cells 20: 376–380, discussion 380–381.
32.
Lee, H., B. Choi, B.H. Min, S.R. Park (2009) Changes in surface markers of human mesenchymal stem cells during the chondrogenic differentiation and dedifferentiation processes in vitro. Arthritis Rheum 60: 2325–2332.
33.
Lee, R., B. Kim, I. Choi, H. Kim, H. Choi, K. Suh, Y. Bae, J. Jung (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14: 311–324.
34.
Lévesque, J., Y. Takamatsu, S. Nilsson, D. Haylock, P. Simmons (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98: 1289–1297.
35.
Liu, Y., X. Shu, G. Prestwich (2006) Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng 12: 3405–3416.
36.
Lohmander, L., E. Roos (2007) Clinical update: treating osteoarthritis. Lancet 370: 2082–2084.
37.
Majumdar, M., V. Banks, D. Peluso, E. Morris (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185: 98–106.
38.
Mareddy, S., R. Crawford, G. Brooke, Y. Xiao (2007) Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Eng 13: 819–829.
39.
Mareschi, K., E. Biasin, W. Piacibello, M. Aglietta, E. Madon, F. Fagioli (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86: 1099–1100.
40.
Martínez-Lorenzo, M., M. Royo-Cañas, E. Alegre-Aguarón, P. Desportes, T. Castiella, F. García-Alvarez, L. Larrad (2009) Phenotype and chondrogenic differentiation of mesenchymal cells from adipose tissue of different species. J Orthop Res 27: 1499–1507.
41.
Meinel, L., S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, G. Vunjak-Novakovic (2004) Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 88: 379–391.
42.
Mitchell, J., K. McIntosh, S. Zvonic, S. Garrett, Z. Floyd, A. Kloster, Y. Di Halvorsen, R. Storms, B. Goh, G. Kilroy, X. Wu, J. Gimble (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24: 376–385.
43.
Mochizuki, T., T. Muneta, Y. Sakaguchi, A. Nimura, A. Yokoyama, H. Koga, I. Sekiya (2006) Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 54: 843–853.
44.
Moretti, P., T. Hatlapatka, D. Marten, A. Lavrentieva, I. Majore, R. Hass, C. Kasper (2010) Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications. Adv Biochem Eng Biotechnol 123: 29–54.
45.
Murphy, J., K. Dixon, S. Beck, D. Fabian, A. Feldman, F. Barry (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46: 704–713.
46.
Murphy, J., D. Fink, E.B. Hunziker, F.P. Barry (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48: 3464–3474.
47.
Musina, R., E. Bekchanova, G. Sukhikh (2005) Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 139: 504–509.
48.
Pittenger, M., A. Mackay, S. Beck, R. Jaiswal, R. Douglas, J. Mosca, M. Moorman, D. Simonetti, S. Craig, D. Marshak (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.
49.
Prockop, D. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71–74.
50.
Prockop, D., I. Sekiya, D. Colter (2001) Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy 3: 393–396.
51.
Puissant, B., C. Barreau, P. Bourin, C. Clavel, J. Corre, C. Bousquet, C. Taureau, B. Cousin, M. Abbal, P. Laharrague, L. Penicaud, L. Casteilla, A. Blancher (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129: 118–129.
52.
Riekstina, U., I. Cakstina, V. Parfejevs, M. Hoogduijn, G. Jankovskis, I. Muiznieks, R. Muceniece, J. Ancans (2009) Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 5: 378–386.
53.
Sakaguchi, Y., I. Sekiya, K. Yagishita, T. Muneta (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52: 2521–2529.
54.
Schäffler, A., C. Büchler (2007) Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 25: 818–827.
55.
Scharstuhl, A., B. Schewe, K. Benz, C. Gaissmaier, H. Bühring, R. Stoop (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25: 3244–3251.
56.
Sekiya, I., D. Colter, D. Prockop (2001) BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun 284: 411–418.
57.
Wagner, W., F. Wein, A. Seckinger, M. Frankhauser, U. Wirkner, U. Krause, J. Blake, C. Schwager, V. Eckstein, W. Ansorge, A. Ho (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33: 1402–1416.
58.
Wakitani, S., T. Saito, A. Caplan (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18: 1417–1426.
59.
Young, H., T. Steele, R. Bray, J. Hudson, J. Floyd, K. Hawkins, K. Thomas, T. Austin, C. Edwards, J. Cuzzourt, M. Duenzl, P. Lucas, A.J. Black (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264: 51–62.
60.
Zuk, P., M. Zhu, P. Ashjian, D.A. De Ugarte, J.I. Huang, H. Mizuno, Z.C. Alfonso, J.K. Fraser, P. Benhaim, M.H. Hedrick (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279–4295.
61.
Zuk, P., M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228.
62.
Zvaifler, N., L. Marinova-Mutafchieva, G. Adams, C.J. Edwards, J. Moss, J.A. Burger, R.N. Maini (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2: 477–488.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.