Poor cell retention and limited cell survival after grafting are major limitations of cell therapy. Recent studies showed that the use of matrices as vehicles at the time of cell injection can significantly improve cell engraftment by providing an appropriate structure and physical support for the injected cells. Properly designed matrices can also promote the organization of the cells into a functioning cardiac-like tissue and enhance integration between the host and the engrafted tissue. Furthermore, the use of an injectable biomaterial provides an opportunity to release in situ bioactive molecules that can further enhance the beneficial effects of cell transplantation. In this article we review a large variety of biologically derived synthetic and hybrid materials that have been tested as matrices for cardiac repair. We summarize the optimal parameters required for an ideal matrix including biocompatibility, injectability, degradation rate, and mechanical properties. Using an in vivo subcutaneous grafting model, we also provide novel data involving a side-by-side comparison of six synthetic matrices derived from maltodextrin. By systematically varying polymer molecular weight, cross-link density, and availability of cell adhesion motifs, a synthetic matrix was identified that supported skeletal myotube formation similar to Matrigel™. Our results emphasize not only the need to have a range of tunable matrices for cardiac cell therapy but also the importance of further characterizing the physical properties required for an ideal injectable matrix.

Copyright / Drug Dosage / DisclaimerCopyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.