Considerable progress has been made toward a molecular understanding of how cells form lumen and tube structures in three-dimensional (3D) extracellular matrices (ECM). This progress has occurred through work performed with endothelial and epithelial cell models using both in vitro and in vivo approaches. Despite the apparent similarities between endothelial and epithelial cell lumen and tube formation mechanisms, there are clear distinctions that directly relate to their functional differences. This review will focus on endothelial cell (EC) lumen formation mechanisms which control blood vessel formation during development and postnatal life. Of great interest is that an EC lumen signaling complex has been identified which controls human EC lumen and tube formation in 3D matrices and which coordinates integrin-ECM contacts, cell surface proteolysis, cytoskeletal rearrangements, and cell polarity. This complex consists of the collagen-binding integrin α2β1, the collagen-degrading membrane-type 1 matrix metalloproteinase (MT1-MMP), junction adhesion molecule (Jam)C, JamB, polarity proteins Par3 and Par6b, and the Rho GTPase Cdc42-GTP. These interacting proteins are necessary to stimulate 3D matrix-specific signaling events (including activation of protein kinase cascades that regulate the actin and microtubule cytoskeletons) to control the formation of EC lumens and tube networks. Also, EC lumen formation is directly coupled to the generation of vascular guidance tunnels, enzymatically generated ECM conduits that facilitate EC tube remodeling and maturation. Mural cells such as pericytes are recruited along EC tubes within these tunnel spaces to control ECM remodeling events resulting in vascular basement membrane matrix assembly, a key step in tube maturation and stabilization.

1.
Adams, R.H., K. Alitalo (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8: 464–478.
2.
Andrew, D.J., A.J. Ewald (2010) Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev Biol 341: 34–55.
3.
Aplin, A.C., E. Fogel, P. Zorzi, R.F. Nicosia (2008) The aortic ring model of angiogenesis. Methods Enzymol 443: 119–136.
4.
Armulik, A., A. Abramsson, C. Betsholtz (2005) Endothelial/pericyte interactions. Circ Res 97: 512–523.
5.
Arroyo, A.G., M.L. Iruela-Arispe (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86: 226–235.
6.
Astrof, S., D. Crowley, R.O. Hynes (2007) Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Dev Biol 311: 11–24.
7.
Astrof, S., R.O. Hynes (2009) Fibronectins in vascular morphogenesis. Angiogenesis 12: 165–175.
8.
Bayless, K.J., G.E. Davis (2002) The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 115: 1123–1136.
9.
Bayless, K.J., G.E. Davis (2003) Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem Biophys Res Commun 312: 903–913.
10.
Bayless, K.J., G.E. Davis (2004) Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. J Biol Chem 279: 11686–11695.
11.
Bayless, K.J., R. Salazar, G.E. Davis (2000) RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol 156: 1673–1683.
12.
Bell, S.E., A. Mavila, R. Salazar, K.J. Bayless, S. Kanagala, S.A. Maxwell, G.E. Davis (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114: 2755–2773.
13.
Blum, Y., H.G. Belting, E. Ellertsdottir, L. Herwig, F. Luders, M. Affolter (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316: 312–322.
14.
Bryant, D.M., A. Datta, A.E. Rodriguez-Fraticelli, J. Peranen, F. Martin-Belmonte, K.E. Mostov (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12: 1035–1045.
15.
Bryant, D.M., K.E. Mostov (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9: 887–901.
16.
Callow, M.G., S. Zozulya, M.L. Gishizky, B. Jallal, T. Smeal (2005) PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci 118: 1861–1872.
17.
Carmeliet, P., M.G. Lampugnani, L. Moons, F. Breviario, V. Compernolle, F. Bono, G. Balconi, R. Spagnuolo, B. Oosthuyse, M. Dewerchin, A. Zanetti, A. Angellilo, V. Mattot, D. Nuyens, E. Lutgens, F. Clotman, M.C. de Ruiter, A. Gittenberger-de Groot, R. Poelmann, F. Lupu, J.M. Herbert, D. Collen, E. Dejana (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98: 147–157.
18.
Carnevale, E., E. Fogel, A.C. Aplin, M. Gelati, K.M. Howson, W.H. Zhu, R.F. Nicosia (2007) Regulation of postangiogenic neovessel survival by beta1 and beta3 integrins in collagen and fibrin matrices. J Vasc Res 44: 40–50.
19.
Chan, A.C., S.G. Drakos, O.E. Ruiz, A.C. Smith, C.G. Gibson, J. Ling, S.F. Passi, A.N. Stratman, A. Sacharidou, M.P. Revelo, A.H. Grossmann, N.A. Diakos, G.E. Davis, M.M. Metzstein, K.J. Whitehead, D.Y. Li (2011) Loss of heterozygosity causes cerebral cavernous malformations in two distinct mouse models. J Clin Invest 121: 1871–1881.
20.
Chang, S., B.D. Young, S. Li, X. Qi, J.A. Richardson, E.N. Olson (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126: 321–334.
21.
Chen, T.T., A. Luque, S. Lee, S.M. Anderson, T. Segura, M.L. Iruela-Arispe (2010) Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol 188: 595–609.
22.
Chun, T.H., F. Sabeh, I. Ota, H. Murphy, K.T. McDonagh, K. Holmbeck, H. Birkedal-Hansen, E.D. Allen, S.J. Weiss (2004) MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol 167: 757–767.
23.
Culver, J.C., M.E. Dickinson (2010) The effects of hemodynamic force on embryonic development. Microcirculation 17: 164–178.
24.
Datta, A., D.M. Bryant, K.E. Mostov (2011) Molecular regulation of lumen morphogenesis. Curr Biol 21: R126–136.
25.
Davis, G.E., K.J. Bayless (2003) An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 10: 27–44.
26.
Davis, G.E., K.J. Bayless, A. Mavila (2002) Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat Rec 268: 252–275.
27.
Davis, G.E., C.W. Camarillo (1996) An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224: 39–51.
28.
Davis, G.E., W. Koh, A.N. Stratman (2007) Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res C Embryo Today 81: 270–285.
29.
Davis, G.E., W.B. Saunders (2006) Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. J Investig Dermatol Symp Proc 11: 44–56.
30.
Davis, G.E., D.R. Senger (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97: 1093–1107.
31.
Davis, G.E., D.R. Senger (2008) Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Curr Opin Hematol 15: 197–203.
32.
Davis, G.E., A.N. Stratman, A. Sacharidou (2011a) Molecular control of vascular tube morphogenesis and stabilization: regulation by extracellular matrix, matrix metalloproteinases and endothelial cell-pericyte interactions; in Gerecht S. (ed): Biophysical Regulation of Vascular Differentiation. New York, Springer, pp 17–47.
33.
Davis, G.E., A.N. Stratman, A. Sacharidou, W. Koh (2011b) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288: in press.
34.
Dejana, E., E. Tournier-Lasserve, B.M. Weinstein (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16: 209–221.
35.
Dekan, G., A. Miettinen, E. Schnabel, M.G. Farquhar (1990) Binding of monoclonal antibodies to glomerular endothelium, slit membranes, and epithelium after in vivo injection: localization of antigens and bound IgGs by immunoelectron microscopy. Am J Pathol 137: 913–927.
36.
Drake, C.J., L.A. Davis, C.D. Little (1992) Antibodies to beta 1-integrins cause alterations of aortic vasculogenesis, in vivo. Dev Dyn 193: 83–91.
37.
Ebnet, K., M. Aurrand-Lions, A. Kuhn, F. Kiefer, S. Butz, K. Zander, M.K. Meyer zu Brickwedde, A. Suzuki, B.A. Imhof, D. Vestweber (2003) The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3:a possible role for JAMs in endothelial cell polarity. J Cell Sci 116: 3879–3891.
38.
Ebnet, K., A. Suzuki, S. Ohno, D. Vestweber (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117: 19–29.
39.
Egginton, S., M. Gerritsen (2003) Lumen formation: in vivo versus in vitro observations. Microcirculation 10: 45–61.
40.
Filla, M.B., A. Czirok, E.A. Zamir, C.D. Little, T.J. Cheuvront, B.J. Rongish (2004) Dynamic imaging of cell, extracellular matrix, and tissue movements during avian vertebral axis patterning. Birth Defects Res C Embryo Today 72: 267–276.
41.
Fisher, K.E., A. Sacharidou, A.N. Stratman, A.M. Mayo, S.B. Fisher, R.D. Mahan, M.J. Davis, G.E. Davis (2009) MT1-MMP- and Cdc42-dependent signaling co-regulate cell invasion and tunnel formation in 3D collagen matrices. J Cell Sci 122: 4558–4569.
42.
Folkman, J., C. Haudenschild (1980) Angiogenesis in vitro. Nature 288: 551–556.
43.
Francis, S.E., K.L. Goh, K. Hodivala-Dilke, B.L. Bader, M. Stark, D. Davidson, R.O. Hynes (2002) Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22: 927–933.
44.
Gaengel, K., G. Genove, A. Armulik, C. Betsholtz (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29: 630–638.
45.
Galan Moya, E.M., A. Le Guelte, J. Gavard (2009) PAKing up to the endothelium. Cell Signal 21: 1727–1737.
46.
Glading, A., J. Han, R.A. Stockton, M.H. Ginsberg (2007) KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 179: 247–254.
47.
Hao, Y., Q. Du, X. Chen, Z. Zheng, J.L. Balsbaugh, S. Maitra, J. Shabanowitz, D.F. Hunt, I.G. Macara (2010) Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical pins. Curr Biol 20: 1809–1818.
48.
Herbert, S.P., J. Huisken, T.N. Kim, M.E. Feldman, B.T. Houseman, R.A. Wang, K.M. Shokat, D.Y. Stainier (2009) Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326: 294–298.
49.
Hill, M.A., Z. Sun, L. Martinez-Lemus, G.A. Meininger (2007) New technologies for dissecting the arteriolar myogenic response. Trends Pharmacol Sci 28: 308–315.
50.
Hoang, M.V., J.A. Nagy, D.R. Senger (2010a) Active Rac1 improves pathological VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1. Blood 117: 1751–1760.
51.
Hoang, M.V., J.A. Nagy, D.R. Senger (2010b) Cdc42-mediated inhibition of GSK-3beta improves angio-architecture and lumen formation during VEGF-driven pathological angiogenesis. Microvasc Res 81: 34–43.
52.
Holderfield, M.T., C.C. Hughes (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102: 637–652.
53.
Hughes, C.C. (2008) Endothelial-stromal interactions in angiogenesis. Curr Opin Hematol 15: 204–209.
54.
Hynes, R.O. (2007) Cell-matrix adhesion in vascular development. J Thromb Haemost 5(suppl 1): 32–40.
55.
Hynes, R.O. (2009) The extracellular matrix: not just pretty fibrils. Science 326: 1216–1219.
56.
Im, E., A. Kazlauskas (2007) Src family kinases promote vessel stability by antagonizing the Rho/ROCK pathway. J Biol Chem 282: 29122–29129.
57.
Iruela-Arispe, M.L., G.E. Davis (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16: 222–231.
58.
Jaffe, A.B., N. Kaji, J. Durgan, A. Hall (2008) Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol 183: 625–633.
59.
Kamei, M., W.B. Saunders, K.J. Bayless, L. Dye, G.E. Davis, B.M. Weinstein (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442: 453–456.
60.
Kiosses, W.B., J. Hood, S. Yang, M.E. Gerritsen, D.A. Cheresh, N. Alderson, M.A. Schwartz (2002) A dominant-negative p65 PAK peptide inhibits angiogenesis. Circ Res 90: 697–702.
61.
Kleaveland, B., X. Zheng, J.J. Liu, Y. Blum, J.J. Tung, Z. Zou, S.M. Sweeney, M. Chen, L. Guo, M.M. Lu, D. Zhou, J. Kitajewski, M. Affolter, M.H. Ginsberg, M.L. Kahn (2009) Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med 15: 169–176.
62.
Koh, W., R.D. Mahan, G.E. Davis (2008a) Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci 121: 989–1001.
63.
Koh, W., K. Sachidanandam, A.N. Stratman, A. Sacharidou, A.M. Mayo, E.A. Murphy, D.A. Cheresh, G.E. Davis (2009) Formation of endothelial lumens requires a coordinated PKCepsilon-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J Cell Sci 122: 1812–1822.
64.
Koh, W., A.N. Stratman, A. Sacharidou, G.E. Davis (2008b) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443: 83–101.
65.
Lafleur, M.A., M.M. Handsley, V. Knauper, G. Murphy, D.R. Edwards (2002) Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 115: 3427–3438.
66.
Lamagna, C., K.M. Hodivala-Dilke, B.A. Imhof, M. Aurrand-Lions (2005) Antibody against junctional adhesion molecule-C inhibits angiogenesis and tumor growth. Cancer Res 65: 5703–5710.
67.
Lampugnani, M.G., E. Dejana (2007) Adherens junctions in endothelial cells regulate vessel maintenance and angiogenesis. Thromb Res 120(suppl 2): S1–6.
68.
Lampugnani, M.G., F. Orsenigo, N. Rudini, L. Maddaluno, G. Boulday, F. Chapon, E. Dejana (2010) CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 123: 1073–1080.
69.
Liu, J., S.D. Fraser, P.W. Faloon, E.L. Rollins, J. Vom Berg, O. Starovic-Subota, A.L. Laliberte, J.N. Chen, F.C. Serluca, S.J. Childs (2007) A betaPix Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proc Natl Acad Sci USA 104: 13990–13995.
70.
Liu, H., D. Rigamonti, A. Badr, J. Zhang (2010) Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res 48: 130–140.
71.
Liu, Y., D.R. Senger (2004) Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells. FASEB J 18: 457–468.
72.
Lubarsky, B., M.A. Krasnow (2003) Tube morphogenesis: making and shaping biological tubes. Cell 112: 19–28.
73.
Lucitti, J.L., E.A. Jones, C. Huang, J. Chen, S.E. Fraser, M.E. Dickinson (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134: 3317–3326.
74.
Martin-Belmonte, F., A. Gassama, A. Datta, W. Yu, U. Rescher, V. Gerke, K. Mostov (2007) PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128: 383–397.
75.
Martin-Belmonte, F., W. Yu, A.E. Rodriguez-Fraticelli, A.J. Ewald, Z. Werb, M.A. Alonso, K. Mostov (2008) Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr Biol 18: 507–513.
76.
Mavria, G., Y. Vercoulen, M. Yeo, H. Paterson, M. Karasarides, R. Marais, D. Bird, C.J. Marshall (2006) ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell 9: 33–44.
77.
McKinney, M.C., B.M. Weinstein (2008) Chapter 4: using the zebrafish to study vessel formation. Methods Enzymol 444: 65–97.
78.
Mochida, G.H., V.S. Ganesh, J.M. Felie, D. Gleason, R.S. Hill, K.R. Clapham, D. Rakiec, W.H. Tan, N. Akawi, M. Al-Saffar, J.N. Partlow, S. Tinschert, A.J. Barkovich, B. Ali, L. Al-Gazali, C.A. Walsh (2011) A homozygous mutation in the tight-junction protein JAM3 causes hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Am J Hum Genet 87: 882–889.
79.
Nakatsu, M.N., C.C. Hughes (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443: 65–82.
80.
O’Brien, L.E., W. Yu, K. Tang, T.S. Jou, M.M. Zegers, K.E. Mostov (2006) Morphological and biochemical analysis of Rac1 in three-dimensional epithelial cell cultures. Methods Enzymol 406: 676–691.
81.
Rhodes, J.M., M. Simons (2007) The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med 11: 176–205.
82.
Sabeh, F., R. Shimizu-Hirota, S.J. Weiss (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185: 11–19.
83.
Sacharidou, A., W. Koh, A.N. Stratman, A.M. Mayo, K.E. Fisher, G.E. Davis (2010) Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 115: 5259–5269.
84.
Sainson, R.C., J. Aoto, M.N. Nakatsu, M. Holderfield, E. Conn, E. Koller, C.C. Hughes (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19: 1027–1029.
85.
San Antonio, J.D., J.J. Zoeller, K. Habursky, K. Turner, W. Pimtong, M. Burrows, S. Choi, S. Basra, J.S. Bennett, W.F. DeGrado, R.V. Iozzo (2009) A key role for the integrin alpha2beta1 in experimental and developmental angiogenesis. Am J Pathol 175: 1338–1347.
86.
Sato, Y., G. Poynter, D. Huss, M.B. Filla, A. Czirok, B.J. Rongish, C.D. Little, S.E. Fraser, R. Lansford (2010) Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLoS One 5: e12674.
87.
Saunders, W.B., K.J. Bayless, G.E. Davis (2005) MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J Cell Sci 118: 2325–2340.
88.
Saunders, W.B., B.L. Bohnsack, J.B. Faske, N.J. Anthis, K.J. Bayless, K.K. Hirschi, G.E. Davis (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175: 179–191.
89.
Segal, S.S. (2005) Regulation of blood flow in the microcirculation. Microcirculation 12: 33–45.
90.
Senger, D.R., K.P. Claffey, J.E. Benes, C.A. Perruzzi, A.P. Sergiou, M. Detmar (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci USA 94: 13612–13617.
91.
Senger, D.R., G.E. Davis (2011) Angiogenesis. Cold Spring Harb Perspect Biol 3: a005090.
92.
Somanath, P.R., A. Ciocea, T.V. Byzova (2009) Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem Biophys 53: 53–64.
93.
Stockton, R.A., R. Shenkar, I.A. Awad, M.H. Ginsberg (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207: 881–896.
94.
Stratman, A.N., M.J. Davis, G.E. Davis (2011) VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood 117: 3709–3719.
95.
Stratman, A.N., K.M. Malotte, R.D. Mahan, M.J. Davis, G.E. Davis (2009a) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114: 5091–5101.
96.
Stratman, A.N., W.B. Saunders, A. Sacharidou, W. Koh, K.E. Fisher, D.C. Zawieja, M.J. Davis, G.E. Davis (2009b) Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114: 237–247.
97.
Stratman, A.N., A.E. Schwindt, K.M. Malotte, G.E. Davis (2010) Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116: 4720–4730.
98.
Strilic, B., T. Kucera, J. Eglinger, M.R. Hughes, K.M. McNagny, S. Tsukita, E. Dejana, N. Ferrara, E. Lammert (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17: 505–515.
99.
Stupack, D.G., D.A. Cheresh (2004) Integrins and angiogenesis. Curr Top Dev Biol 64: 207–238.
100.
Tan, W., T.R. Palmby, J. Gavard, P. Amornphimoltham, Y. Zheng, J.S. Gutkind (2008) An essential role for Rac1 in endothelial cell function and vascular development. FASEB J 22: 1829–1838.
101.
Tian, Y., L. Lei, M. Cammarano, T. Nekrasova, A. Minden (2009) Essential role for the Pak4 protein kinase in extraembryonic tissue development and vessel formation. Mech Dev 126: 710–720.
102.
Tzima, E., W.B. Kiosses, M.A. del Pozo, M.A. Schwartz (2003) Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. J Biol Chem 278: 31020–31023.
103.
van der Flier, A., K. Badu-Nkansah, C.A. Whittaker, D. Crowley, R.T. Bronson, A. Lacy-Hulbert, R.O. Hynes (2010) Endothelial alpha5 and alphav integrins cooperate in remodeling of the vasculature during development. Development 137: 2439–2449.
104.
Wagenseil, J.E., R.P. Mecham (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89: 957–989.
105.
Wang, Y., M.S. Kaiser, J.D. Larson, A. Nasevicius, K.J. Clark, S.A. Wadman, S.E. Roberg-Perez, S.C. Ekker, P.B. Hackett, M. McGrail, J.J. Essner (2010) Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137: 3119–3128.
106.
Warren, C.M., M.L. Iruela-Arispe (2010) Signaling circuitry in vascular morphogenesis. Curr Opin Hematol 17: 213–218.
107.
Whitehead, K.J., A.C. Chan, S. Navankasattusas, W. Koh, N.R. London, J. Ling, A.H. Mayo, S.G. Drakos, C.A. Jones, W. Zhu, D.A. Marchuk, G.E. Davis, D.Y. Li (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15: 177–184.
108.
Xu, K., D.C. Chong, S.A. Rankin, A.M. Zorn, O. Cleaver (2009) Rasip1 is required for endothelial cell motility, angiogenesis and vessel formation. Dev Biol 329: 269–279.
109.
Xu, K., A. Sacharidou, S. Fu, D.C. Chong, B. Skaug, Z.J. Chen, G.E. Davis, O. Cleaver (2011) Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev Cell 20: 1–14.
110.
Yang, S., J. Graham, J.W. Kahn, E.A. Schwartz, M.E. Gerritsen (1999) Functional roles for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am J Pathol 155: 887–895.
111.
Yaniv, K., S. Isogai, D. Castranova, L. Dye, J. Hitomi, B.M. Weinstein (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12: 711–716.
112.
Zamir, E.A., A. Czirok, C. Cui, C.D. Little, B.J. Rongish (2006) Mesodermal cell displacements during avian gastrulation are due to both individual cell-autonomous and convective tissue movements. Proc Natl Acad Sci USA 103: 19806–19811.
113.
Zheng, X., C. Xu, A. Di Lorenzo, B. Kleaveland, Z. Zou, C. Seiler, M. Chen, L. Cheng, J. Xiao, J. He, M.A. Pack, W.C. Sessa, M.L. Kahn (2010) CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest 120: 2795–2804.
114.
Zovein, A.C., A. Luque, K.A. Turlo, J.J. Hofmann, K.M. Yee, M.S. Becker, R. Fassler, I. Mellman, T.F. Lane, M.L. Iruela-Arispe (2010) β1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 18: 39–51.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.