Abstract
Storage of muscle preparations in vitro is required for the diagnosis of neuromuscular disorders and for electrophysiological tests. The current standard protocols for muscle storage or transport, i.e. placement on 0.9% NaCl-moistened gauze, lead to impaired function and structural alterations. For other tissues, however, improved preservation methods and solutions have recently been described. In this study, functional and structural alterations in the murine diaphragm were compared after storage on 0.9% NaCl-moistened gauze and after storage in different modifications of the new vascular preservation solution TiProtec®. Muscle force generation after nerve stimulation, histological parameters and ATP levels were investigated after 2.5 h of cold storage at 4°C in the different media and 0.5 h of rewarming at 25°C in Tyrode buffer. Murine diaphragms were injured during cold storage and rewarming, with the degree of the alteration being dependent on the type of solution used. There were no histological alterations and no caspase 3 activation in all groups. In contrast, diaphragms stored in the modified TiProtec solution showed markedly better performance concerning force generation after nerve stimulation (7.1 ± 1.1 cN · s) as well as higher ATP content (2.4 ± 0.7 µmol/g) and were superior to storage on 0.9% NaCl-moistened gauze (1.4 ± 0.4 cN · s; 0.3 ± 0.1 µmol/g). In conclusion, the modified TiProtec preservation solution showed promising results for short-term cold storage of murine diaphragms. For further evaluation, the transferability of these positive findings to storage conditions for muscles of other species, especially human muscle tissue, needs to be investigated.