During development and in pathological contexts such as fibrosis and cancer progression, epithelial cells can initiate a complex transcriptional reprogramming, accompanied by dramatic morphological changes, in a process named ‘epithelial-mesenchymal transition’ (EMT). In this transition, epithelial cells lose their epithelial characteristics to acquire mesenchymal properties and increased motile and invasive behavior. Transforming growth factor-β (TGF-β) has emerged as a major inducer of EMT through activation of downstream signaling pathways, including Smad and non-Smad signaling pathways. Among the non-Smad pathways, increasing evidence is emerging that the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis plays a major role in TGF-β-induced EMT, notably through the regulation of translation and cell invasion. Pharmacological inhibitors of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin pathway may therefore represent an opportunity to selectively target essential aspects of TGF-β-induced EMT and provide an approach to prevent cancer cell dissemination toward metastasis, without the need to fully inactivate TGF-β signaling.

1.
Acloque, H., M.S. Adams, K. Fishwick, M. Bronner-Fraser, M.A. Nieto (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119: 1438–1449.
2.
Aguilera, A., L.S. Aroeira, M. Ramirez-Huesca, M.L. Perez-Lozano, A. Cirugeda, M.A. Bajo, G. Del Peso, A. Valenzuela-Fernandez, J.A. Sanchez-Tomero, M. Lopez-Cabrera, R. Selgas (2005) Effects of rapamycin on the epithelial-to-mesenchymal transition of human peritoneal mesothelial cells. Int J Artif Organs 28: 164–169.
3.
Akhurst, R.J. (2008) TGF-β signaling in epithelial-mesenchymal transition and invasion and metastasis; in Derynck, R., K. Miyazono (eds) The TGF-β Family. New York, Cold Spring Harbor Laboratory Press, pp 939–964.
4.
Alcorn, J.F., A.S. Guala, J. van der Velden, B. McElhinney, C.G. Irvin, R.J. Davis, Y.M. Janssen-Heininger (2008) Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-β1. J Cell Sci 121: 1036–1045.
5.
Azhar, M., J. Schultz Jel, I. Grupp, G.W. Dorn, 2nd, P. Meneton, D.G. Molin, A.C. Gittenberger-de Groot, T. Doetschman (2003) Transforming growth factor-β in cardiovascular development and function. Cytokine Growth Factor Rev 14: 391–407.
6.
Bachelder, R.E., S.O. Yoon, C. Franci, A.G. de Herreros, A.M. Mercurio (2005) Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 168: 29–33.
7.
Bakin, A.V., C. Rinehart, A.K. Tomlinson, C.L. Arteaga (2002) p38 mitogen-activated protein kinase is required for TGF-β-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115: 3193–3206.
8.
Bakin, A.V., A.K. Tomlinson, N.A. Bhowmick, H.L. Moses, C.L. Arteaga (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor-β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275: 36803–36810.
9.
Barrallo-Gimeno, A., M.A. Nieto (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161.
10.
Batlle, E., E. Sancho, C. Franci, D. Dominguez, M. Monfar, J. Baulida, A. Garcia De Herreros (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.
11.
Bhowmick, N.A., M. Ghiassi, A. Bakin, M. Aakre, C.A. Lundquist, M.E. Engel, C.L. Arteaga, H.L. Moses (2001) Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12: 27–36.
12.
Bierie, B., H.L. Moses (2006a) TGF-β and cancer. Cytokine Growth Factor Rev 17: 29–40.
13.
Bierie, B., H.L. Moses (2006b) Tumour microenvironment: TGF-β: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506–520.
14.
Bonafoux, D., W.C. Lee (2009) Strategies for TGF-β modulation: a review of recent patents. Expert Opin Ther Pat 19: 1759–1769.
15.
Bracken, C.P., P.A. Gregory, N. Kolesnikoff, A.G. Bert, J. Wang, M.F. Shannon, G.J. Goodall (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68: 7846–7854.
16.
Burk, U., J. Schubert, U. Wellner, O. Schmalhofer, E. Vincan, S. Spaderna, T. Brabletz (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9: 582–589.
17.
Cano, A., M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco, M.G. del Barrio, F. Portillo, M.A. Nieto (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.
18.
Chaudhury, A., G.S. Hussey, P.S. Ray, G. Jin, P.L. Fox, P.H. Howe (2010) TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol 12: 286–293.
19.
Cho, H.J., K.E. Baek, S. Saika, M.J. Jeong, J. Yoo (2007) Snail is required for transforming growth factor-β-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun 353: 337–343.
20.
Cho, H.J., J. Yoo (2007) Rho activation is required for transforming growth factor-β-induced epithelial-mesenchymal transition in lens epithelial cells. Cell Biol Int 31: 1225–1230.
21.
Comijn, J., G. Berx, P. Vermassen, K. Verschueren, L. van Grunsven, E. Bruyneel, M. Mareel, D. Huylebroeck, F. van Roy (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7: 1267–1278.
22.
Cui, W., D.J. Fowlis, S. Bryson, E. Duffie, H. Ireland, A. Balmain, R.J. Akhurst (1996) TGF-β1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86: 531–542.
23.
Das, F., N. Ghosh-Choudhury, L. Mahimainathan, B. Venkatesan, D. Feliers, D.J. Riley, B.S. Kasinath, G.G. Choudhury (2008) Raptor-rictor axis in TGF-β-induced protein synthesis. Cell Signal 20: 409–423.
24.
Deckers, M., M. van Dinther, J. Buijs, I. Que, C. Lowik, G. van der Pluijm, P. ten Dijke (2006) The tumor suppressor Smad4 is required for transforming growth factor-β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66: 2202–2209.
25.
Derynck, R., R.J. Akhurst, A. Balmain (2001) TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29: 117–129.
26.
Derynck, R., Y.E. Zhang (2003) Smad-dependent and Smad-independent pathways in TGF-β family signaling. Nature 425: 577–584.
27.
Eger, A., K. Aigner, S. Sonderegger, B. Dampier, S. Oehler, M. Schreiber, G. Berx, A. Cano, H. Beug, R. Foisner (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24: 2375–2385.
28.
Feng, X.H., R. Derynck (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21: 659–693.
29.
Gonzalez, E., T.E. McGraw (2009) The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8: 2502–2508.
30.
Gordon, K.J., K.C. Kirkbride, T. How, G.C. Blobe (2009) Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis 30: 238–248.
31.
Grande, M., A. Franzen, J.O. Karlsson, L.E. Ericson, N.E. Heldin, M. Nilsson (2002) Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci 115: 4227–4236.
32.
Gregory, P.A., A.G. Bert, E.L. Paterson, S.C. Barry, A. Tsykin, G. Farshid, M.A. Vadas, Y. Khew-Goodall, G.J. Goodall (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10: 593–601.
33.
Gressner, A.M., R. Weiskirchen, K. Breitkopf, S. Dooley (2002) Roles of TGF-β in hepatic fibrosis. Front Biosci 7: d793–d807.
34.
Guertin, D.A., D.M. Sabatini (2007) Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.
35.
Guertin, D.A., D.M. Sabatini (2009) The pharmacology of mTOR inhibition. Sci Signal 2: pe24.
36.
Guertin, D.A., D.M. Stevens, M. Saitoh, S. Kinkel, K. Crosby, J.H. Sheen, D.J. Mullholland, M.A. Magnuson, H. Wu, D.M. Sabatini (2009) mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15: 148–159.
37.
Gulati, N., M. Karsy, L. Albert, R. Murali, M. Jhanwar-Uniyal (2009) Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility. Int J Oncol 35: 731–740.
38.
Han, G., S.L. Lu, A.G. Li, W. He, C.L. Corless, M. Kulesz-Martin, X.J. Wang (2005) Distinct mechanisms of TGF-β1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 115: 1714–1723.
39.
Hay, N., N. Sonenberg (2004) Upstream and downstream of mTOR. Genes Dev 18: 1926–1945.
40.
Holz, M.K., B.A. Ballif, S.P. Gygi, J. Blenis (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123: 569–580.
41.
Hoot, K.E., J. Lighthall, G. Han, S.L. Lu, A. Li, W. Ju, M. Kulesz-Martin, E. Böttinger, X.J. Wang (2008) Keratinocyte-specific Smad2 ablation results in increased epithelialmesenchymal transition during skin cancer formation and progression. J Clin Invest 118: 2722–2732.
42.
Huber, M.A., N. Azoitei, B. Baumann, S. Grunert, A. Sommer, H. Pehamberger, N. Kraut, H. Beug, T. Wirth (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114: 569–581.
43.
Iliopoulos, D., C. Polytarchou, M. Hatziapostolou, F. Kottakis, I.G. Maroulakou, K. Struhl, P.N. Tsichlis (2009) MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal 2: ra62.
44.
Irie, H.Y., R.V. Pearline, D. Grueneberg, M. Hsia, P. Ravichandran, N. Kothari, S. Natesan, J.S. Brugge (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol 171: 1023–1034.
45.
Iwano, M., D. Plieth, T.M. Danoff, C. Xue, H. Okada, E.G. Neilson (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110: 341–350.
46.
Jacinto, E., R. Loewith, A. Schmidt, S. Lin, M.A. Ruegg, A. Hall, M.N. Hall (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6: 1122–1128.
47.
Julien, S., I. Puig, E. Caretti, J. Bonaventure, L. Nelles, F. van Roy, C. Dargemont, A.G. de Herreros, A. Bellacosa, L. Larue (2007) Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 26: 7445–7456.
48.
Kalluri, R., E.G. Neilson (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112: 1776–1784.
49.
Kalluri, R., R.A. Weinberg (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420–1428.
50.
Kang, Y., C.R. Chen, J. Massagué (2003) A self-enabling TGF-β response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11: 915–926.
51.
Kishigami, S., Y. Mishina (2005) BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev 16: 265–278.
52.
Klattig, J., C. Englert (2007) The Mullerian duct: recent insights into its development and regression. Sex Dev 1: 271–278.
53.
Klymkowsky, M.W., P. Savagner (2009) Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol 174: 1588–1593.
54.
Kondo, M., E. Cubillo, K. Tobiume, T. Shirakihara, N. Fukuda, H. Suzuki, K. Shimizu, K. Takehara, A. Cano, M. Saitoh, K. Miyazono (2004) A role for Id in the regulation of TGF-β-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ 11: 1092–1101.
55.
Kong, W., H. Yang, L. He, J.J. Zhao, D. Coppola, W.S. Dalton, J.Q. Cheng (2008) MicroRNA-155 is regulated by the transforming growth factor-β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28: 6773–6784.
56.
Lamouille, S., R. Derynck (2007) Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 178: 437–451.
57.
Laplante, M., D.M. Sabatini (2009) mTOR signaling at a glance. J Cell Sci 122: 3589–3594.
58.
Larue, L., A. Bellacosa (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3-kinase/AKT pathways. Oncogene 24: 7443–7454.
59.
Lee, M.K., C. Pardoux, M.C. Hall, P.S. Lee, D. Warburton, J. Qing, S.M. Smith, R. Derynck (2007) TGF-β activates Erk MAP kinase signaling through direct phosphorylation of ShcA. EMBO J 26: 3957–3967.
60.
Lee, Y.I., Y.J. Kwon, C.K. Joo (2004) Integrin-linked kinase function is required for transforming growth factor-β-mediated epithelial to mesenchymal transition. Biochem Biophys Res Commun 316: 997–1001.
61.
Lien, S.C., S. Usami, S. Chien, J.J. Chiu (2006) Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-β1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells. Cell Signal 18: 1270–1278.
62.
Lin, C.C., L.L. Chiang, C.H. Lin, C.H. Shih, Y.T. Liao, M.J. Hsu, B.C. Chen (2007) Transforming growth factor-β1 stimulates heme oxygenase-1 expression via the PI3K/Akt and NF-kappaB pathways in human lung epithelial cells. Eur J Pharmacol 560: 101–109.
63.
Liu, L., F. Li, J.A. Cardelli, K.A. Martin, J. Blenis, S. Huang (2006) Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene 25: 7029–7040.
64.
Liu, P., H. Cheng, T.M. Roberts, J.J. Zhao (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8: 627–644.
65.
Ma, L., M.F. Lu, R.J. Schwartz, J.F. Martin (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132: 5601–5611.
66.
Masszi, A., A. Kapus (2011) Smaddening complexity: The role of Smad3 in epithelial-myofibroblast transition. Cells Tissues Organs 193: 41–52.
67.
McDonald, P.C., A.B. Fielding, S. Dedhar (2008) Integrin-linked kinase – essential roles in physiology and cancer biology. J Cell Sci 121: 3121–3132.
68.
Meindl-Beinker, N.M., S. Dooley (2008) Transforming growth factor-β and hepatocyte transdifferentiation in liver fibrogenesis. J Gastroenterol Hepatol 23 (suppl 1): S122–S127.
69.
Mercado-Pimentel, M.E., R.B. Runyan (2007) Multiple transforming growth factor-β isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185: 146–156.
70.
Miettinen, P.J., R. Ebner, A.R. Lopez, R. Derynck (1994) TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127: 2021–2036.
71.
Miyazono, K (2009) Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 85: 314–323.
72.
Moreno-Bueno, G., F. Portillo, A. Cano (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27: 6958–6969.
73.
Moustakas, A., C.H. Heldin (2005) Non-Smad TGF-β signals. J Cell Sci 118: 3573–3584.
74.
Moustakas, A., C.H. Heldin (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98: 1512–1520.
75.
Nakajima, Y., T. Yamagishi, S. Hokari, H. Nakamura (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-β and bone morphogenetic protein (BMP). Anat Rec 258: 119–127.
76.
Nawshad, A., D. LaGamba, E.D. Hay (2004) Transforming growth factor-β (TGF-β) signaling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol 49: 675–689.
77.
Nguyen, D.X., J. Massagué (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8: 341–352.
78.
Oft, M., K.H. Heider, H. Beug (1998) TGF-β signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8: 1243–1252.
79.
Ozdamar, B., R. Bose, M. Barrios-Rodiles, H.R. Wang, Y. Zhang, J.L. Wrana (2005) Regulation of the polarity protein Par6 by TGF-β receptors controls epithelial cell plasticity. Science 307: 1603–1609.
80.
Padua, D., J. Massagué (2009) Roles of TGF-β in metastasis. Cell Res 19: 89–102.
81.
Peinado, H., D. Olmeda, A. Cano (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.
82.
Pellegrin, S., H. Mellor (2007) Actin stress fibres. J Cell Sci 120: 3491–3499.
83.
Pelton, R.W., B.L. Hogan, D.A. Miller, H.L. Moses (1990) Differential expression of genes encoding TGFs β1, β2, and β3 during murine palate formation. Dev Biol 141: 456–460.
84.
Perez-Moreno, M.A., A. Locascio, I. Rodrigo, G. Dhondt, F. Portillo, M.A. Nieto, A. Cano (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 276: 27424–27431.
85.
Perk, J., A. Iavarone, R. Benezra (2005) Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 5: 603–614.
86.
Piek, E., A. Moustakas, A. Kurisaki, C.H. Heldin, P. ten Dijke (1999) TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112: 4557–4568.
87.
Pon, Y.L., H.Y. Zhou, A.N. Cheung, H.Y. Ngan, A.S. Wong (2008) p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res 68: 6524–6532.
88.
Portella, G., S.A. Cumming, J. Liddell, W. Cui, H. Ireland, R.J. Akhurst, A. Balmain (1998) Transforming growth factor-β is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ 9: 393–404.
89.
Qiao, M., J.D. Iglehart, A.B. Pardee (2007) Metastatic potential of 21T human breast cancer cells depends on Akt/protein kinase B activation. Cancer Res 67: 5293–5299.
90.
Robert, F., J. Pelletier (2009) Translation initiation: a critical signaling node in cancer. Expert Opin Ther Targets 13: 1279–1293.
91.
Rodriguez-Barbero, A., F. Dorado, S. Velasco, A. Pandiella, B. Banas, J.M. Lopez-Novoa (2006) TGF-β1 induces COX-2 expression and PGE2 synthesis through MAPK and PI3K pathways in human mesangial cells. Kidney Int 70: 901–909.
92.
Ruzinova, M.B., R. Benezra (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13: 410–418.
93.
Santibanez, J.F. (2006) JNK mediates TGF-β1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett 580: 5385–5391.
94.
Sarbassov, D.D., S.M. Ali, D.H. Kim, D.A. Guertin, R.R. Latek, H. Erdjument-Bromage, P. Tempst, D.M. Sabatini (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296–1302.
95.
Sarbassov, D.D., D.A. Guertin, S.M. Ali, D.M. Sabatini (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.
96.
Schmidt, C.R., Y.J. Gi, T.A. Patel, R.J. Coffey, R.D. Beauchamp, A.S. Pearson (2005) E-cadherin is regulated by the transcriptional repressor SLUG during Ras-mediated transformation of intestinal epithelial cells. Surgery 138: 306–312.
97.
Schnaper, H.W., T. Hayashida, S.C. Hubchak, A.C. Poncelet (2003) TGF-β signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 284: F243–F252.
98.
Shi, Y., J. Massagué (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113: 685–700.
99.
Shirakihara, T., M. Saitoh, K. Miyazono (2007) Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-β. Mol Biol Cell 18: 3533–3544.
100.
Sorrentino, A., N. Thakur, S. Grimsby, A. Marcusson, V. von Bulow, N. Schuster, S. Zhang, C.H. Heldin, M. Landstrom (2008) The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10: 1199–1207.
101.
Tavares, A.L., M.E. Mercado-Pimentel, R.B. Runyan, G.T. Kitten (2006) TGF-β-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart. Dev Dyn 235: 1589–1598.
102.
Theriault, B.L., T.G. Shepherd, M.L. Mujoomdar, M.W. Nachtigal (2007) BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 28: 1153–1162.
103.
Thiery, J.P (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15: 740–746.
104.
Thiery, J.P., H. Acloque, R.Y. Huang, M.A. Nieto (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139: 871–890.
105.
Thiery, J.P., J.P. Sleeman (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.
106.
Thuault, S., U. Valcourt, M. Petersen, G. Manfioletti, C.H. Heldin, A. Moustakas (2006) Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174: 175–183.
107.
Uttamsingh, S., X. Bao, K.T. Nguyen, M. Bhanot, J. Gong, J.L. Chan, F. Liu, T.T. Chu, L.H. Wang (2008) Synergistic effect between EGF and TGF-β1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene 27: 2626–2634.
108.
Valcourt, U., M. Kowanetz, H. Niimi, C.H. Heldin, A. Moustakas (2005) TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16: 1987–2002.
109.
Vardouli, L., A. Moustakas, C. Stournaras (2005) LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-β. J Biol Chem 280: 11448–11457.
110.
Vincent, T., E.P. Neve, J.R. Johnson, A. Kukalev, F. Rojo, J. Albanell, K. Pietras, I. Virtanen, L. Philipson, P.L. Leopold, R.G. Crystal, A.G. de Herreros, A. Moustakas, R.F. Pettersson, J. Fuxe (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition. Nat Cell Biol 11: 943–950.
111.
Willis, B.C., Z. Borok (2007) TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293: L525–L534.
112.
Wu, L., R. Derynck (2009) Essential role of TGF-β signaling in glucose-induced cell hypertrophy. Dev Cell 17: 35–48.
113.
Xie, L., B.K. Law, A.M. Chytil, K.A. Brown, M.E. Aakre, H.L. Moses (2004) Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia 6: 603–610.
114.
Xu, J., S. Lamouille, R. Derynck (2009) TGF-β-induced epithelial to mesenchymal transition. Cell Res 19: 156–172.
115.
Yamashita, M., K. Fatyol, C. Jin, X. Wang, Z. Liu, Y.E. Zhang (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol Cell 31: 918–924.
116.
Yang, J., S.A. Mani, J.L. Donaher, S. Ramaswamy, R.A. Itzykson, C. Come, P. Savagner, I. Gitelman, A. Richardson, R.A. Weinberg (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.
117.
Yeh, Y.Y., C.C. Chiao, W.Y. Kuo, Y.C. Hsiao, Y.J. Chen, Y.Y. Wei, T.H. Lai, Y.C. Fong, C.H. Tang (2008) TGF-β1 increases motility and αvβ3 integrin up-regulation via PI3K, Akt and NF-kappaB-dependent pathway in human chondrosarcoma cells. Biochem Pharmacol 75: 1292–1301.
118.
Yi, J.Y., I. Shin, C.L. Arteaga (2005) Type I transforming growth factor-β receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem 280: 10870–10876.
119.
Yilmaz, M., G. Christofori (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28: 15–33.
120.
Yu, L., M.C. Hebert, Y.E. Zhang (2002) TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J 21: 3749–3759.
121.
Zavadil, J., E.P. Böttinger (2005) TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774.
122.
Zeisberg, E.M., O. Tarnavski, M. Zeisberg, A.L. Dorfman, J.R. McMullen, E. Gustafsson, A. Chandraker, X. Yuan, W.T. Pu, A.B. Roberts, E.G. Neilson, M.H. Sayegh, S. Izumo, R. Kalluri (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13: 952–961.
123.
Zeisberg, M., J. Hanai, H. Sugimoto, T. Mammoto, D. Charytan, F. Strutz, R. Kalluri (2003) BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9: 964–968.
124.
Zeisberg, M., E.G. Neilson (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119: 1429–1437.
125.
Zeisberg, M., A.A. Shah, R. Kalluri (2005) Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem 280: 8094–8100.
126.
Zhou, B.P., J. Deng, W. Xia, J. Xu, Y.M. Li, M. Gunduz, M.C. Hung (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6: 931–940.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.