A variety of studies have reported on the isolation and expansion of cardiac stem cells from adult hearts. However, there is little information concerning cardiac stem/progenitor cells derived from embryonic hearts/heart tubes. To provide more evidence for embryonic heart-derived stem/progenitor cells, Nkx2.5+ human cardiac progenitorcells (hCPCs) were isolated and cloned from human heart tubes. The cells stained positive for Nkx2.5 and Oct-4, and negative for α-smooth muscle actin (α-SMA), cytokeratin, factor-VIII, α-sarcomeric actin and c-Kit. GATA-4 expression of Nkx2.5+ hCPCs was higher than that of embryonic limb bud mesenchymal cells of the control group (p < 0.05). These cells were passaged continuously for >3 months (23 passages) and proliferated actively in vitro. After being treated with 5-azacytidine, Nkx2.5+ hCPCs underwent cardiomyogenic differentiation. Ultrastructural observation confirmed that the longitudinal section of these cardiomyogenic differentiation cells clearly revealed typical sarcomeres and intercalated discs. α-MHC, α-sarcomeric actin and GATA-4 levels were increased in Nkx2.5+ hCPCs treated with 5-azacytidine compared to untreated cells. Nkx2.5+ hCPCs exhibited positive staining and had a higher expression for α-SMA when cocultured with canine vascular endothelial cells. After Nkx2.5+ hCPCs were treated with endothelin-1, all cells displayed spontaneous electrical activity and spontaneous beating. Connexin-40 and -45 were stained positive in the treated cells. In conclusion, Nkx2.5+ hCPCs derived from heart tubes have been isolated and cloned in vitro. These cells are capable of long-term self-renewal and possess a potential to differentiate into cardiac muscle-like cells, cardiac pacemaking cells and smooth muscle-like cells. They could have a significant impact on cardiac regeneration medicine and developmental biology.

Alcolea, S., T. Jarry-Guichard, J. de Bakker, D. Gonzalez, W. Lamers, S. Coppen, L. Barrio, H. Jongsma, D. Gros, H. van Rijen (2004) Replacement of connexin40 by connexin45 in the mouse: impact on cardiac electrical conduction. Circ Res 94: 100–109.
Anversa, P., J. Kajstura, A. Leri, R. Bolli (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113: 1451–1463.
Bearzi, C., M. Rota, T. Hosoda, J. Tillmanns, A. Nascimbene, A. De Angelis, S. Yasuzawa-Amano, I. Trofimova, R.W. Siggins, N. Lecapitaine, S. Cascapera, A.P. Beltrami, D.A. D’Alessandro, E. Zias, F. Quaini, K. Urbanek, R.E. Michler, R. Bolli, J. Kajstura, A. Leri, P. Anversa (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104: 14068–14073.
Beltrami, A.P., L. Barlucchi, D. Torella, M. Baker, F. Limana, S. Chimenti, H. Kasahara, M. Rota, E. Musso, K. Urbanek, A. Leri, J. Kajstura, B. Nadal-Ginard, P. Anversa (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776.
Choi, S.C., J. Yoon, W.J. Shim, Y.M. Ro, D.S. Lim (2004) 5-Azacytidine induces cardiac differentiation of P19 embryonic stem cells. Exp Mol Med 36: 515–523.
Coppen, S.R., N.J. Severs, R.G. Gourdie (1999) Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet 24: 82–90.
Daniel, J.G., E.N. Olson (2006) A common progenitor at the heart of development. Cell 127: 1101–1104.
Delorme, B., E. Dahl, T. Jarry-Guichard, I. Marics, J.P. Briand, K. Willecke, D. Gros, M. Theveniau-Ruissy (1995) Developmental regulation of connexin 40 gene expression in mouse heart correlates with the differentiation of the conduction system. Dev Dyn 204: 358–371.
Grépin, C., G. Nemer, M. Nemer (1997) Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 124: 2387–2395.
Hidaka, K., J.K. Lee, H.S. Kim, C.H. Ihm, A. Iio, M. Ogawa, S. Nishikawa, I. Kodama, T. Morisaki (2003) Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J 17: 740–742.
Ip, H.S., D.B. Wilson, M. Heikinheimo, Z. Tang, C.N. Ting, M.C. Simon, J.M. Leiden, M.S. Parmacek (1994) The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol Cell Biol 14: 7517–7526.
Laugwitz, K.L., A. Moretti, J. Lam, P. Gruber, Y. Chen, S. Woodard, L.Z. Lin, C.L. Cai, M.M. Lu, M. Reth, O. Platoshyn, J.X. Yuan, S. Evans, K.R. Chien (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433: 647–653.
Linke, A., P. Muller, D. Nurzynska, C. Casarsa, D. Torella, A. Nascimbene, C. Castaldo, S. Cascapera, M. Bohm, F. Quaini, K. Urbanek, A. Leri, T.H. Hintze, J. Kajstura, P. Anversa (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102: 8966–8971.
Litvin, J., M. Montgomery, A. Gonzalez-Sanchez (1992) Commitment and differentiation of cardiac myocytes. Trends Cardiovasc Med 2: 27–32.
Makino, S., K. Fukuda, S. Miyoshi, F. Konishi, H. Kodama, J. Pan, M. Sano, T. Takahashi, S. Hori, H. Abe, J. Hata, A. Umezawa, S. Ogawa (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103: 697–705.
Martin, C.M., A.P. Meeson, S.M. Robertson, T.J. Hawke, J.A. Richardson, S. Bates, S.C. Goetsch, T.D. Gallardo, D.J. Garry (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265: 262–275.
Matsuura, K., T. Nagai, N. Nishigaki, T. Oyama, J. Nishi, H. Wada, M. Sano, H. Toko, H. Akazawa, T. Sato, H. Nakaya, H. Kasanuki, I. Komuro (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279: 11384–11391.
Messina, E., L. De Angelis, G. Frati, S. Morrone, S. Chimenti, F. Fiordaliso, M. Salio, M. Battaglia, M.V. Latronico, M. Coletta, E. Vivarelli, L. Frati, G. Cossu, A. Giacomello (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95: 911–921.
Molkentin, J.D., D.V. Kalvakolanu, B.E. Markham (1994) Transcription factor GATA-4 regulates cardiac muscle-specific expression of the α-myosin heavy-chain gene. Mol Cell Biol 14: 4947–4957.
Moretti, A., L. Caron, A. Nakano, J.T. Lam, A. Bernshausen, Y. Chen, Y. Qyang, L. Bu, M. Sasaki, S. Martin-Puig, Y. Sun, S.M. Evans, K.L. Laugwitz, K.R. Chien (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127: 1151–1165.
Oh, H., S.B. Bradfute, T.D. Gallardo, T. Nakamura, V. Gaussin, Y. Mishina, J. Pocius, L.H. Michael, R.R. Behringer, D.J. Garry, M.L. Entman, M.D. Schneider (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100: 12313–12318.
Oh, H., X. Chi, S.B. Bradfute, Y. Mishina, J. Pocius, L.H. Michael, R.R. Behringer, R.J. Schwartz, M.L. Entman, M.D. Schneider (2004) Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann NY Acad Sci 1015: 182–189.
Sugi, Y., R.R. Markwald (1996) Formation and early morphogenesis of endocardial endothelial precursor cells and the role of endoderm. Dev Biol 175: 66–83.
Urbanek, K., M. Rota, S. Cascapera, C. Bearzi, A. Nascimbene, A. De Angelis, T. Hosoda, S. Chimenti, M. Baker, F. Limana, D. Nurzynska, D. Torella, F. Rotatori, R. Rastaldo, E. Musso, F. Quaini, A. Leri, J. Kajstura, P. Anversa (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97: 663–673.
Urbanek, K., D. Torella, F. Sheikh, A. De Angelis, D. Nurzynska, F. Silvestri, C.A. Beltrami, R. Bussani, A.P. Beltrami, F. Quaini, R. Bolli, A. Leri, J. Kajstura, P. Anversa (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 102: 8692– 8697.
Verkerk, A.O., M.M. van Borren, R.J. Peters, E. Broekhuis, K.Y. Lam, R. Coronel, J.M. de Bakker, H.L. Tan, R. Wilders (2007) Single cells isolated from human sinoatrial node: action potentials and numerical reconstruction of pacemaker current. Conf Proc IEEE Eng Med Biol Soc 2007, pp 904–907.
Wei, Y., T. Mikawa (2000) Fate diversity of primitive streak cells during heart field formation in ovo. Dev Dyn 219: 505–513.
Wu, S.M., Y. Fujiwara, S.M. Cibulsky, D.E. Clapham, C.L. Lien, T.M. Schultheiss, S.H. Orkin (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127: 1137–1150.
Xu, C., S. Police, N. Rao, M.K. Carpenter (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91: 501–508.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.