Hematopoietic stem cell research has made tremendous progress over the last decades, and blood has become one of the best understood mammalian stem cell systems. The easy accessibility of hematopoietic cells, which are not tightly embedded in tissue, has supported this fast development. However, the hematopoietic system also exhibits disadvantages over other stem cell systems: the identity of individual cells is quickly lost when followed in cell culture and developmental stages cannot easily be distinguished by morphology. Therefore, difficulties to constantly analyze the fate of single cells are one reason for many open questions in hematopoiesis. So far, most findings are based on endpoint analyses of populations, consisting of heterogeneous cells in different stages of development or cell cycle. However, endpoint analyses merely reflect the result of a progressive sequence of fate decisions, whereas individual decisions, which would elucidate stem cell behavior, are not investigated. Thorough observation of the fate of individual cells and their progeny over many generations will add to a comprehensive understanding of the regulation of stem cell behavior. Here, we review current attempts of single cell analyses in hematopoiesis research and outline how time-lapse imaging and single cell tracking can contribute to approaching long-standing questions in hematopoiesis.

1.
Abramovich, C., R.K. Humphries (2005) Hox regulation of normal and leukemic hematopoietic stem cells. Curr Opin Hematol 12: 210–216.
2.
Adolfsson, J., R. Mansson, N. Buza-Vidas, A. Hultquist, K. Liuba, C. T. Jensen, D. Bryder, L. Yang, O.J. Borge, L.A. Thoren, K. Anderson, E. Sitnicka, Y. Sasaki, M. Sigvardsson, S.E. Jacobsen (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121: 295–306.
3.
Akashi, K., D. Traver, T. Miyamoto, I.L. Weissman (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193–197.
4.
Alivisatos, P. (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22: 47–52.
5.
Arai, F., A. Hirao, M. Ohmura, H. Sato, S. Matsuoka, K. Takubo, K. Ito, G. Y. Koh, T. Suda (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118: 149–161.
6.
Back, J., A. Dierich, C. Bronn, P. Kastner, S. Chan (2004) PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood 103: 3615–3623.
7.
Becker, A.J., E.A. McCulloch, J.E. Till (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197: 452–454.
8.
Bonnet, D., J.E. Dick (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737.
9.
Chalfie, M., Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805.
10.
Chudakov, D.M., S. Lukyanov, K.A. Lukyanov (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23: 605–613.
11.
Corish, P., C. Tyler-Smith (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12: 1035–1040.
12.
Dykstra, B., J. Ramunas, D. Kent, L. McCaffrey, E. Szumsky, L. Kelly, K. Farn, A. Blaylock, C. Eaves, E. Jervis (2006) High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. Proc Natl Acad Sci USA 103: 8185–8190.
13.
Ema, H., H. Takano, K. Sudo, H. Nakauchi (2000) In vitro self-renewal division of hematopoietic stem cells. J Exp Med 192: 1281–1288.
14.
Enver, T., C.M. Heyworth, T.M. Dexter (1998) Do stem cells play dice? Blood 92: 348–351; discussion 352.
15.
Faubert, A., J. Lessard, G. Sauvageau (2004) Are genetic determinants of asymmetric stem cell division active in hematopoietic stem cells? Oncogene 23: 7247–7255.
16.
Faust, N., F. Varas, L.M. Kelly, S. Heck, T. Graf (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96: 719–726.
17.
Fuxa, M., M. Busslinger (2007) Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of pax5 in support of its B cell identity function. J Immunol 178: 3031–3037.
18.
Gao, X., L. Yang, J. A. Petros, F.F. Marshall, J.W. Simons, S. Nie (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16: 63–72.
19.
Germain, R.N., M.J. Miller, M.L. Dustin, M.C. Nussenzweig (2006) Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 6: 497–507.
20.
Giebel, B., T. Zhang, J. Beckmann, J. Spanholtz, P. Wernet, A.D. Ho, M. Punzel (2006) Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood 107: 2146–2152.
21.
Giepmans, B.N., S.R. Adams, M.H. Ellisman, R.Y. Tsien (2006) The fluorescent toolbox for assessing protein location and function. Science 312: 217–224.
22.
Hanson, P., V. Mathews, S.H. Marrus, T.A. Graubert (2003) Enhanced green fluorescent protein targeted to the Sca-1 (Ly-6A) locus in transgenic mice results in efficient marking of hematopoietic stem cells in vivo. Exp Hematol 31: 159–167.
23.
Heck, S., O. Ermakova, H. Iwasaki, K. Akashi, C. W. Sun, T. M. Ryan, T. Townes, T. Graf (2003) Distinguishable live erythroid and myeloid cells in β-globin ECFP x lysozyme EGFP mice. Blood 101: 903–906.
24.
Heinrich, A.C., R. Pelanda, U. Klingmuller (2004) A mouse model for visualization and conditional mutations in the erythroid lineage. Blood 104: 659–666.
25.
Hoang, T. (2004) The origin of hematopoietic cell type diversity. Oncogene 23: 7188–7198.
26.
Hope, K.J., L. Jin, J.E. Dick (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5: 738–743.
27.
Hulett, H.R., W.A. Bonner, J. Barrett, L.A. Herzenberg (1969) Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166: 747–749.
28.
Iwasaki, H., S. Mizuno, R. Mayfield, H. Shigematsu, Y. Arinobu, B. Seed, M.F. Gurish, K. Takatsu, K. Akashi (2005) Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med 201: 1891–1897.
29.
Kiel, M. J., O.H. Yilmaz, T. Iwashita, O.H. Yilmaz, C. Terhorst, S.J. Morrison (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121.
30.
Kirstetter, P., K. Anderson, B.T. Porse, S.E. Jacobsen, C. Nerlov (2006) Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 7: 1048–1056.
31.
Kohler, G., C. Milstein (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.
32.
Kondo, M., I.L. Weissman, K. Akashi (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91: 661–672.
33.
Kuwata, N., H. Igarashi, T. Ohmura, S. Aizawa, N. Sakaguchi (1999) Cutting edge: absence of expression of RAG1 in peritoneal B-1 cells detected by knocking into RAG1 locus with green fluorescent protein gene. J Immunol 163: 6355–6359.
34.
Li, X., X. Zhao, Y. Fang, X. Jiang, T. Duong, C. Fan, C.C. Huang, S.R. Kain (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273: 34970–34975.
35.
Lidke, D.S., P. Nagy, R. Heintzmann, D.J. Arndt-Jovin, J.N. Post, H.E. Grecco, E.A. Jares-Erijman, T.M. Jovin (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22: 198–203.
36.
Lindquist, R.L., G. Shakhar, D. Dudziak, H. Wardemann, T. Eisenreich, M.L. Dustin, M. C. Nussenzweig (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5: 1243–1250.
37.
Ma, X., C. Robin, K. Ottersbach, E. Dzierzak (2002) The Ly-6A (Sca-1) GFP transgene is expressed in all adult mouse hematopoietic stem cells. Stem Cells 20: 514–521.
38.
Marks, K.M., G.P. Nolan (2006) Chemical labeling strategies for cell biology. Nat Methods 3: 591–596.
39.
Mazo, I.B., E.J. Quackenbush, J.B. Lowe, U.H. von Andrian (2002) Total body irradiation causes profound changes in endothelial traffic molecules for hematopoietic progenitor cell recruitment to bone marrow. Blood 99: 4182–4191.
40.
Metcalf, D. (1998) Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 92: 345–347; discussion 352.
41.
Miller, L.W., V.W. Cornish (2005) Selective chemical labeling of proteins in living cells. Curr Opin Chem Biol 9: 56–61.
42.
Miyamoto, T., H. Iwasaki, B. Reizis, M. Ye, T. Graf, I.L. Weissman, K. Akashi (2002) Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 3: 137–147.
43.
Moore, K.A., H. Ema, I.R. Lemischka (1997) In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 89: 4337–4347.
44.
Muller-Sieburg, C.E., R.H. Cho, M. Thoman, B. Adkins, H.B. Sieburg (2002) Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100: 1302–1309.
45.
Muller-Sieburg, C.E., R.H. Cho, L. Karlsson, J.F. Huang, H.B. Sieburg (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103: 4111–4118.
46.
Okita, C., M. Sato, T. Schroeder (2004) Generation of optimized yellow and red fluorescent proteins with distinct subcellular localization. Biotechniques 36: 418–422, 424.
47.
Osawa, M., K. Hanada, H. Hamada, H. Nakauchi (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245.
48.
Prasher, D.C., V.K. Eckenrode, W.W. Ward, F.G. Prendergast, M.J. Cormier (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229–233.
49.
Quesenberry, P.J. (2006) The continuum model of marrow stem cell regulation. Curr Opin Hematol 13: 216–221.
50.
Reya, T., S.J. Morrison, M.F. Clarke, I.L. Weissman (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.
51.
Roman-Roman, S., T. Garcia, A. Jackson, J. Theilhaber, G. Rawadi, T. Connolly, S. Spinella-Jaegle, S. Kawai, B. Courtois, S. Bushnell, M. Auberval, K. Call, R. Baron (2003) Identification of genes regulated during osteoblastic differentiation by genome-wide expression analysis of mouse calvaria primary osteoblasts in vitro. Bone 32: 474–482.
52.
Scadden, D.T. (2006) The stem-cell niche as an entity of action. Nature 441: 1075–1079.
53.
Shimomura, O., F.H. Johnson, Y. Saiga (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59: 223–239.
54.
Sieburg, H.B., R.H. Cho, B. Dykstra, N. Uchida, C.J. Eaves, C.E. Muller-Sieburg (2006) The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107: 2311–2316.
55.
Siminovitch, L., E.A. McCulloch, J.E. Till (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62: 327–336.
56.
Singbartl, K., J. Thatte, M.L. Smith, K. Wethmar, K. Day, K. Ley (2001) A CD2-green fluorescence protein-transgenic mouse reveals very late antigen-4-dependent CD8+ lymphocyte rolling in inflamed venules. J Immunol 166: 7520–7526.
57.
Suda, J., T. Suda, M. Ogawa (1984) Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors. Blood 64: 393–399.
58.
Sumen, C., T.R. Mempel, I.B. Mazo, U.H. von Andrian (2004) Intravital microscopy: visualizing immunity in context. Immunity 21: 315–329.
59.
Suzuki, N., O. Ohneda, N. Minegishi, M. Nishikawa, T. Ohta, S. Takahashi, J.D. Engel, M. Yamamoto (2006) Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc Natl Acad Sci USA 103: 2202–2207.
60.
Takano, H., H. Ema, K. Sudo, H. Nakauchi (2004) Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs. J Exp Med 199: 295–302.
61.
Terskikh, A., A. Fradkov, G. Ermakova, A. Zaraisky, P. Tan, A.V. Kajava, X. Zhao, S. Lukyanov, M. Matz, S. Kim, I. Weissman, P. Siebert (2000) ‘Fluorescent timer’: protein that changes color with time. Science 290: 1585–1588.
62.
Thomas, E.D., H.L. Lochte, Jr., W.C. Lu, J.W. Ferrebee (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257: 491–496.
63.
Till, J.E., E.A. McCulloch (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222.
64.
Tokoyoda, K., T. Egawa, T. Sugiyama, B.I. Choi, T. Nagasawa (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20: 707–718.
65.
Tsien, R.Y. (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett 579: 927–932.
66.
Uchida, N., B. Dykstra, K.J. Lyons, F.Y. Leung, C.J. Eaves (2003) Different in vivo repopulating activities of purified hematopoietic stem cells before and after being stimulated to divide in vitro with the same kinetics. Exp Hematol 31: 1338–1347.
67.
Wineman, J., K. Moore, I. Lemischka, C. Muller-Sieburg (1996) Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87: 4082–4090.
68.
Yu, F., C.T. Kuo, Y.N. Jan (2006) Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron 51: 13–20.
69.
Yu, W., Z. Misulovin, H. Suh, R.R. Hardy, M. Jankovic, N. Yannoutsos, M.C. Nussenzweig (1999) Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5′ of RAG2. Science 285: 1080–1084.
70.
Zhang, J., C. Niu, L. Ye, H. Huang, X. He, W. G. Tong, J. Ross, J. Haug, T. Johnson, J. Q. Feng, S. Harris, L. M. Wiedemann, Y. Mishina, L. Li (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836–841.
71.
Zhang, J., F. Varas, M. Stadtfeld, S. Heck, N. Faust, T. Graf (2007) CD41-YFP mice allow in vivo labeling of megakaryocytic cells and reveal a subset of platelets hyperreactive to thrombin stimulation. Exp Hematol 35: 490–499.
72.
Zimmermann, T., J. Rietdorf, R. Pepperkok (2003) Spectral imaging and its applications in live cell microscopy. FEBS Lett 546: 87–92.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.