In ovarian carcinoma, acquisition of invasiveness is accompanied by the loss of the epithelial features and the gain of a mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT). The endothelin A receptor (ETAR)/endothelin-1 (ET-1) axis is overexpressed in primary and metastatic ovarian carcinoma. In this tumor type, the ET-1/ETAR axis has a critical role in ovarian carcinoma progression by inducing proliferation, survival, neoangiogenesis, loss of intercellular communication and invasion. Recently, we demonstrated that the ET-1/ETAR autocrine pathway drives EMT in ovarian tumor cells by inducing an invasive phenotype through downregulation of E-cadherin, increased levels of β-catenin, Snail and other mesenchymal markers, and suppression of E-cadherin promoter activity. Activation of ETAR by ET-1 triggers a phosphatidylinositol 3-kinase-dependent integrin-linked kinase (ILK)-mediated signaling pathway leading to glycogen synthase kinase-3β (GSK-3β) inhibition, Snail and β-catenin stabilization andtranscriptional programs that control EMT. Transfection of dominant negative ILK or exposure to an ILK inhibitor suppresses the ET-1-induced phosphorylation of GSK-3β as well as Snail and β-catenin protein stability, transcriptional activity and invasiveness, indicating that ET-1/ETAR-induced EMT depends on ILK activity. ETAR blockade by specific antagonists, or reduction by ETAR RNA interference, reverses EMT and cell invasion by inhibiting autocrine signaling pathways. In ovarian carcinoma xenografts, the specific ETAR antagonist ABT-627 suppresses EMT determinants and tumor growth. In human ovarian cancers, ETAR expression is associated with E-cadherin downregulation, N-cadherin expression and tumor grade. In conclusion, our findings demonstrate that ETAR activation by ET-1 is a key mechanism of the complex signaling network that promotes EMT as well as ovarian cancer cell invasion. The small molecule ETAR antagonist achieves concomitant suppression of tumor growth and EMT effectors, providing a new opportunity for therapeutic intervention in which targeting ILK pathway and the related Snail and β-catenin signaling cascade via ETAR blockade may be advantageous in the treatment of ovarian cancer.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.