There is currently great interest worldwide in developing noninvasive methods for the delivery of vaccines for upper respiratory tract diseases, including middle ear infection (otitis media, OM). One such noninvasive approach believed to have great potential for the prevention of diseases of the airway is to deliver vaccines by the intranasal (i.n.) route. Induction of a local, mucosal immune response in the upper respiratory tract, and particularly in the nasopharynx, would be a highly efficacious approach to prevention of OM. The chinchilla is the preferred rodent host for studying OM. However, although the anatomy of the chinchilla vomeronasal organ, inner ear, middle ear and Eustachian tube have been well-studied, to date there have been no reports in the literature of a similar complete analysis of the nasopharynx and nasal cavities of the chinchilla. In order to develop a relevant animal model of i.n. delivery as a potential immunization approach for the prevention of OM and to use these models for preclinical assessments of various vaccine candidates, it was important that we better understand the anatomy of the chinchilla nasal cavities and nasopharynx. Our anatomical studies revealed that the naso- and maxilloturbinates of the chinchilla nasal cavity more closely resemble the simple turbinates found in other rodents rather than the branched or complex turbinates seen in dogs, cats, and rabbits thus facilitating the i.n. delivery of vaccine candidates. The chinchilla nasal mucosa also contains numerous lymphoid aggregates like that of other rodents. Our findings thus suggest that we will be able to deliver i.n. vaccines effectively to chinchillas and that these vaccines will likely be able to induce specific immune responses.

1.
Alper, C.M., A. Andalibi, L.O. Bakaletz, C. Buchman, P. Caye-Thomasen, S.O. Hellstrom, et al. (2002) Recent advances in otitis media. 4. Anatomy, cell biology, pathology, and animal models. Ann Otol Rhinol Laryngol Suppl 188: 36–51.
2.
Asanuma, H., C. Aizawa, T. Kurata, S. Tamura (1998) IgA antibody-forming cell responses in the nasal-associated lymphoid tissue of mice vaccinated by intranasal, intravenous and/or subcutaneous administration. Vaccine 16: 1257–1262.
3.
Bakaletz, L.O. (1995) Viral potentiation of bacterial superinfection of the respiratory tract. Trends Microbiol 3: 110–114.
4.
Bakaletz, L.O., B.J. Kennedy, L.A. Novotny, G. Dequesne, J. Cohen, Y. Lobet (1999) Protection against development of otitis media induced by nontypeable Haemophilus influenzae by both active and passive immunization in a chinchilla model of virus-bacterium superinfection. Infect Immun 67: 2746–2762.
5.
Bakaletz, L.O. E.R. Leake, J.M. Billy, P.T. Kaumaya (1997) Relative immunogenicity and efficacy of two synthetic chimeric peptides of fimbrin as vaccinogens against nasopharyngeal colonization by nontypeable Haemophilus influenzae in the chinchilla. Vaccine 15: 955–961.
6.
Bakaletz, L.O., D.M. Murwin, J.M. Billy (1995) Adenovirus serotype 1 does not act synergistically with Moraxella (Branhamella) catrrhalis to induce otitis media in the chinchilla. Infect Immun 63: 4188–4190.
7.
Barchfeld, G.L. A.L. Hessler, M. Chen, M. Pizza, R. Rappuoli, G.A. Van Nest (1999) The adjuvants MF59 and LT-K63 enhance the mucosal and systemic immunogenicity of subunit influenza vaccine administered intranasally in mice. Vaccine 17: 695–704.
8.
Bhatnagar, K.P., E. Meisami (1998) Vomeronasal organ in bats and primates: Extremes of structural variability and its phylogenetic implications. Microsc Res Tech 43: 465–475.
9.
Bluestone, C.D. (1996) Pathogenesis of otitis media: Role of eustachian tube. Pediatr Infect Dis J 15: 281–291.
10.
Bojsen-Moller, F., J. Fahrenkrug (1971) Nasal swell-bodies and cyclic changes in the air pasage of the rat and rabbit nose. J Anat 110: 25–37.
11.
Bourguignon, P., M. Bisteau, S. Veenstra, P. Hermand, V. Henderickx, M. Friede, et al. (2001) Reactogenicity and passage into the brains of enterotoxins and CpG-oligonucleotides administered intranasally to mice. Fourth Annual Conference on Vaccine Research, Arlington, 53.
12.
Bowman, C.C., J.D. Clements (2001) Differential biological and adjuvant activities of cholera toxin and Escherichia coli heat-labile enterotoxin hybrids. Infect Immun 69: 1528–1535.
13.
Boyaka, P.N., P.F. Wright, M. Marinaro, H. Kiyono, J.E. Johnson, R.A. Gonzales, et al. (2000) Human nasopharyngeal-associated lymphoreticular tissues. Functional analysis of subepithelial and intraepithelial B and T cells from adenoids and tonsils. Am J Pathol 157: 2023–2035.
14.
Brenneman, K.A., B.A. Wong, M.A. Buccellato, E.R. Costa, E.A. Gross, D.C. Dorman (2000) Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: Toxicokinetic investigations in a unilateral nasal occlusion model. Toxicol Appl Pharmacol 169: 238–248.
15.
Childers, N.K., K.L. Miller, G. Tong, J.C. Llarena, T. Greenway, J.T. Ulrich, S.M. Michalek (2000) Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect Immun 68: 5509–5516.
16.
Cusi, M.G., M.M. Lomagistro, M. Valassina, P.E. Valensin, R. Gluck (2000) Immunopotentiating of mucosal and systemic antibody responses in mice by intranasal immunization with HLT-combined influenza virosomal vaccine. Vaccine 18: 2838–2842.
17.
Davis, S.S. (2001) Nasal vaccines. Adv Drug Deliv Rev 51: 21–42.
18.
DeMaria, T.F. (1989) Animal models for nontypable Haemophilus influenzae otitis media. Pediatr Infect Dis J 8: S40–S42.
19.
Doyle, W.J. (1985) Eustachian tube function in the chinchilla. Arch Otolarnygol 111: 305–308.
20.
Doyle, W.J. (1989) Animal models of otitis media: Other pathogens. Pediatr Infect Dis J 8: S45–S47.
21.
Faden, H. (2001) The microbiologic and immunologic basis for recurrent otitis media in children. Eur J Pediatr 160: 407–413.
22.
Faden, H., L. Duffy, R. Wasielewski, J. Wolf, D. Krystofik, Y. Tung (1997) Relationship between nasopharyngeal colonization and the development of otitis media in children. Tonawanda/Williamsville Pediatrics. J Infect Dis 175: 1440–1445.
23.
Fujihashi, K., T. Koga, F.W. van Ginkel, Y. Hagiwara, J.R. McGhee (2002) A dilemma for mucosal vaccination: Efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine 20: 2431–2438.
24.
Giebink, G.S. (1999) Otitis media: The chinchilla model. Microb Drug Resist 5: 57–72.
25.
Giebink, G.S., I.K. Berzins, S.C. Marker, G. Schiffman (1980) Experimental otitis media after nasal inoculation of Streptococcus pneumoniae and influenza A virus in chinchillas. Infect Immun 30: 445–450.
26.
Giebink, G.S., E.E. Payne, E.L. Mills, S.K. Juhn, P.G. Quie (1976) Experimental otitis media due to Streptococcus pneumoniae: Immunopathogenic response in the chinchilla. J Infect Dis 134: 595–604.
27.
Gizurarson, S. (1990) Animal models for intranasal drug delivery studies. A review article. Acta Pharm Nord 2: 105–122.
28.
Goetsch, L., A. Gonzalez, H. Plotnicky-Gilquin, J.F. Haeuw, J.P. Aubry, A. Beck et al. (2001) Targeting of nasal mucosa-associated antigen-presenting cells in vivo with an outer membrane protein A derived from Klebsiella pneumoniae. Infect Immun 69: 6434–6444.
29.
Gross, E.A., J.A. Swenberg, S. Fields, J.A. Popp (1982) Comparative morphometry of the nasal cavity in rats and mice. J Anat 135: 83–88.
30.
Halpern, M., C. Jia, L.S. Shapiro (1998) Segregated pathways in the vomeronasal system. Microsc Res Tech 41: 519–529.
31.
Hament, J.M., J.L. Kimpen, A. Fleer, T.F. Wolfs (1999) Respiratory viral infection predisposing for bacterial disease: A concise review. FEMS Immunol Med Microbiol 26: 189–195.
32.
Harkema, J.R. (1990) Comparative pathology of the nasal mucosa in laboratory animals exposed to inhaled irritants. Environ Health Perspect 85: 231–238.
33.
Hiraide, F., T. Inouye (1983) The fine surface view of the human adult eustachian tube. J Laryngol Otol 97: 149–157.
34.
Honjo, I., H. Takahashi, M. Sudo, K. Ishijima, M. Tanabe (1998) Pathophysiological and therapeutic considerations of otitis media with effusion from viewpoint of middle ear ventilation. Int J Pediatr Otorhinolaryngol 43: 105–113.
35.
Hotomi, M., T. Saito, N. Yamanaka (1998) Specific mucosal immunity and enhanced nasopharyngeal clearance of nontypeable Haemophilus influenzae after intranasal immunization with outer membrane protein P6 and cholera toxin. Vaccine 16: 1950–1956.
36.
Illum, L., S.S. Davis (2001) Nasal vaccination: A non-invasive vaccine delivery method that holds great promise for the future. Adv Drug Deliv Rev 51: 1–3.
37.
Jakobsen, H., S. Bjarnarson, G. Del Giudice, M. Moreau, C.A. Siegrist, I. Jonsdottir (2002) Intranasal immunization with pneumococcal conjugate vaccines with LT-K63, a nontoxic mutant of heat-labile enterotoxin, as adjuvant rapidly induces protective immunity against lethal pneumococcal infections in neonatal mice. Infect Immun 70: 1443–1452.
38.
Jecker, P., R. Pabst, J. Westermann (2001) Proliferating macrophages, dendritic cells, natural killer cells, T and B lymphocytes in the middle ear and Eustachian tube mucosa during experimental acute otitis media in the rat. Clin Exp Immunol 126: 421–425.
39.
Kennedy, B.J., L.A. Novotny, J.A. Jurcisek, Y. Lobet, L.O. Bakaletz (2000) Passive transfer of antiserum specific for immunogens derived from a nontypeable Haemophilus influenzae adhesin and lipoprotein D prevents otitis media after heterologous challenge. Infect Immun 68: 2756–2765.
40.
Kuper, C.F., P.J. Koornstra, D.M. Hameleers, J. Biewenga, B.J. Spit, A.M. Duijvestijn, et al. (1992) The role of nasopharyngeal lymphoid tissue. Immunol Today 13: 219–224.
41.
Kurono, Y., M. Yamamoto, K. Fujihashi, S. Kodama, M. Suzuki, G. Mogi et al. (1999) Nasal immunization induces Haemophilus influenzae-specific Th1 and Th2 responses with mucosal IgA and systemic IgG antibodies for protective immunity. J Infect Dis 180: 122–132.
42.
Leino, T., K. Auranen, J. Jokinen, M. Leinonen, P. Tervonen, A.K. Takala (2001) Pneumococcal carriage in children during their first two years: Important role of family exposure. Pediatr Infect Dis J 20: 1022–1027.
43.
Lim, D.J., T.F. DeMaria, L.O. Bakaletz (1987) Functional morphology of the tubotympanum related to otitis media: A review. Am J Otol 8: 385–389.
44.
Locht, C. (2000) Live bacterial vectors for intranasal delivery of protective antigens. Pharm Sci Technol Today 3: 121–128.
45.
Lu, X., J.D. Clements, J.M. Katz (2002) Mutant Escherichia coli heat-labile enterotoxin [LT(R192G)] enhances protective humoral and cellular immune responses to orally administered inactivated influenza vaccine. Vaccine 20: 1019–1029.
46.
Marchisio, P., R. Cavagna, B. Maspes, S. Gironi, S. Esposito, L. Lambertini, et al. (2002) Efficacy of intranasal virosomal influenza vaccine in the prevention of recurrent acute otitis media in children. Clin Infect Dis 35: 168–174.
47.
Matsune, S., I. Sando, H. Takahashi (1992) Distribution of eustachian tube goblet cells and glands in children with and without otitis media. Ann Otol Rhinol Laryngol 101: 750–754.
48.
Matsuo, K., T. Yoshikawa, H. Asanuma, T. Iwasaki, Y. Hagiwara, Z. Chen et al. (2000) Induction of innate immunity by nasal influenza vaccine administered in combination with an adjuvant (cholera toxin). Vaccine 18: 2713–2722.
49.
Meisami, E., K.P. Bhatnagar (1998) Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech 43: 476–499.
50.
Merkus, F.W., J.C. Verhoef, E. Marttin, S.G. Romeijn, P.H. van der Kuy, W.A. Hermens, N.G. Schipper (1999) Cyclodextrins in nasal drug delivery. Adv Drug Deliv Rev 36: 41–57.
51.
Mielcarek, N., S. Alonso, C. Locht (2001) Nasal vaccination using live bacterial vectors. Adv Drug Deliv Rev 51: 55–69.
52.
Millar, D.G., T.R. Hirst, D.P. Snider (2001) Escherichia coli heat-labile enterotoxin B subunit is a more potent mucosal adjuvant than its closely related homologue, the B subunit of cholera toxin. Infect Immun 69: 3476–3482.
53.
Mills, R.P., H.E. Christmas (1990) Applied comparative anatomy of the nasal turbinates. Clin Otolarnygol 15: 553–558.
54.
Muller, M. (1971) Vergleichende elektrophysiologische Untersuchungen an den Sinnesepithelien des Jacobsonschen Organs und der Nase von Amphibien (Rana), Reptilien (Lacerata) und Säugetieren (Mus). Z Vergl Physiol 72: 370–385.
55.
Neutra, M.R., N.J. Mantis, J.P. Kraehenbuhl (2001) Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2: 1004–1009.
56.
O’Hagan, D.T., M.L. MacKichan, M. Singh (2001) Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng 18: 69–85.
57.
Oikawa, T., K. Shimamura, T.R. Saito, K. Taniguchi (1994) Fine structure of the vomeronasal organ in the chinchilla (Chinchilla laniger). Jikken Dobutsu 43: 487–497.
58.
Olszewska, W., C.D. Partidos, M.W. Steward (2000) Antipeptide antibody responses following intranasal immunization: Effectiveness of mucosal adjuvants. Infect Immun 68: 4923–4929.
59.
Partidos, C.D. (2000) Intranasal vaccines: Forthcoming challenges. Pharm Sci Technol Today 3: 273–281.
60.
Pietrowsky, R., C. Struben, M. Molle, H.L. Fehm, J. Born (1996) Brain potential changes after intranasal vs. intravenous administration of vasopressin: Evidence for a direct nose-brain pathway for peptide effects in humans. Biol Psychiatry 39: 332–340.
61.
Reznik, G.K. (1990) Comparative anatomy, physiology, and function of the upper respiratory tract. Environ Health Perspect 85: 171–176.
62.
Russell, M.W., M.H. Martin, H.Y. Wu, S.K. Hollingshead, Z. Moldoveanu, J. Mestecky (2000) Strategies of immunization against mucosal infections. Vaccine 19(suppl 1): S122–S127.
63.
Rynnel-Dagöö, B., K. Agren (2000) The nasopharynx and the middle ear. Inflammatory reactions in middle ear disease. Vaccine 19(suppl 1): S26–S31.
64.
Sabirov, A., S. Kodama, T. Hirano, M. Suzuki, G. Mogi (2001) Intranasal immunization enhances clearance of nontypeable Haemophilus influenzae and reduces stimulation of tumor necrosis factor alpha production in the murine model of otitis media. Infect Immun 69: 2964–2971.
65.
Sade, J., A. Ar (1997) Middle ear and auditory tube: Middle ear clearance, gas exchange, and pressure regulation. Otolaryngol Head Neck Surg 116: 499–524.
66.
Sam, M., S. Vora, B. Malnic, W. Ma, M.V. Novotny, L.B. Buck (2001) Neuropharmacology. Odorants may arouse instinctive behaviours. Nature 412: 142.
67.
Sando, I., H. Takahashi, H. Aoki, S. Matsune (1993) Mucosal folds in human eustachian tube: A hypothesis regarding functional localization in the tube. Ann Otol Rhinol Laryngol 102: 47–51.
68.
Sando, I., H. Takahashi, S. Matsune, H. Aoki (1994) Localization of function in the eustachian tube: A hypothesis. Ann Otol Rhinol Larnygol 103: 311–314.
69.
Schreider, J.P. (1983) Nasal airway anatomy and inhalation deposition in experimental animals and people; in Reznik, G., S.F. Stinsson (eds): Nasal Tumors in Animals and Man. Boca Raton, CRC Press, pp 2–26.
70.
Seilly, D.J. (1982) A chemical test to determine the end point of EDTA decalcification. Med Lab Sci 39: 71–73.
71.
Shen, X., T. Lagergard, Y. Yang, M. Lindblad, M. Fredriksson, J. Holmgren (2001) Group B Streptococcus capsular polysaccharide-cholera toxin B subunit conjugate vaccines prepared by different methods for intranasal immunization. Infect Immun 69: 297–306.
72.
Simmons, C.P., M. Ghaem-Magami, L. Petrovska, L. Lopes, B.M. Chain, N.A. Williams, G. Dougan (2001) Immunomodulation using bacterial enterotoxins. Scand J Immunol 53: 218–226.
73.
Sirakova, T., P.E. Kolattukudy, D. Murwin, J. Billy, E. Leake, D. Lim, et al. (1994) Role of fimbriae expressed by nontypeable Haemophilus influenzae in pathogenesis of and protection against otitis media and relatedness of the fimbrin subunit to outer membrane protein A. Infect Immun 62: 2002–2020.
74.
Suzuki, K., L.O. Bakaletz (1994) Synergistic effect of adenovirus type 1 and nontypeable Haemophilus influenzae in a chinchilla model of experimental otitis media. Infect Immun 62: 1710–1718.
75.
Switzer, R.C., 3rd, J.I. Johnson, J.A. Kirsch (1980) Phylogeny through brain traits. Relation of lateral olfactory tract fibers to the accessory olfactory formation as a palimpsest of mammalian descent. Brain Behav Evol 17: 339–363.
76.
Syrjanen, R.K., T.M. Kilpi, T.H. Kaijalainen, E.E. Herva, A.K. Takala (2001) Nasopharyngeal carriage of Streptococcus pneumoniae in Finnish children younger than 2 years old. J Infect Dis 184: 451–459.
77.
Tong, H.H., L.M. Fisher, G.M. Kosunick, T.F. DeMaria (2000) Effect of adenovirus type I and influenza A virus on Streptococcus pneumoniae nasopharyngeal colonization and otitis media in the chinchilla. Ann Otol Rhinol Laryngol 109: 1021–1027.
78.
Tucker, D. (1971) Nonolfactory responses from the nasal cavity: Jacobson’s organ and the trigeminal system; Beidler, L.M. (ed): Handbook of Sensory Physiology. New York, Springer, pp 151–181.
79.
Uraih, L.C., R.R. Maronpot (1990) Normal histology of the nasal cavity and application of special techniques. Environ Health Perspect 85: 187–208.
80.
Vaccarezza, O.L., L.N. Sepich, J.H. Tramezzani (1981) The vomeronasal organ of the rat. J Anat 132: 167–185.
81.
van Ginkel, F.W., R.J. Jackson, Y. Yuki, J.R. McGhee (2000) Cutting edge: The mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J Immunol 165: 4478–4782.
82.
Vesa, S., M. Kleemola, S. Blomqvist, A. Takala, T. Kilpi, T. Hovi (2001) Epidemiology of documented viral respiratory infections and acute otitis media in a chohort of children followed from two to twenty-four months of age. Pediatr Infect Dis J 20: 574–581.
83.
Visweswaraiah, A., L. Novotny, E. Hjemdahl-Monsen, L. Bakaletz, Y. Thanavala (2002) Tracking the tissue distribution of marker dye following intranasal delivery in mice and chinchillas: A multifactorial analysis of parameters affecting nasal retention. Vaccine 20: 3209.
84.
Ye, Y., D.G. Machado, D.O. Kim (2000) Projectoin of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat. J Comp Neurol 420: 127–138.
85.
Zuercher, A.W., S.E. Coffin, M.C. Thurnheer, P. Fundova, J.J. Cebra (2002) Nasal-associated lymphoid tissue is a mucosal inductive site for virus-specific humoral and cellular immune responses. J Immunol 168: 1796–1803.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.