The term ‘code’ in biological information transfer appears to be tightly and hitherto exclusively connected with the genetic code based on nucleotides and translated into functional activities via proteins. However, the recent appreciation of the enormous coding capacity of oligosaccharide chains of natural glycoconjugates has spurred to give heed to a new concept: versatile glycan assembly by the genetically encoded glycosyltransferases endows cells with a probably not yet fully catalogued array of meaningful messages. Enciphered by sugar receptors such as endogenous lectins the information of code words established by a series of covalently linked monosaccharides as letters for example guides correct intra- and intercellular routing of glycoproteins, modulates cell proliferation or migration and mediates cell adhesion. Evidently, the elucidation of the structural frameworks and the recognition strategies within the operation of the sugar code poses a fascinating conundrum. The far-reaching impact of this recognition mode on the level of cells, tissues and organs has fueled vigorous investigations to probe the subtleties of protein-carbohydrate interactions. This review presents information on the necessarily concerted approach using X-ray crystallography, molecular modeling, nuclear magnetic resonance spectroscopy, thermodynamic analysis and engineered ligands and receptors. This part of the treatise is flanked by exemplarily chosen insights made possible by these techniques.

1.
André, S., P.J. Cejas Ortega, M. Alamino Perez, R. Roy, H.-J. Gabius (1999a) Lactose-containing starburst dendrimers: Influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties. Glycobiology 9: 1253–1261.
2.
André, S., S. Kojima, N. Yamazaki, C. Fink, H. Kaltner, K. Kayser, H.-J. Gabius (1999b) Galectins-1 and -3 and their ligands in tumor biology. Non-uniform properties in cell surface presentation and modulation of adhesion to matrix glycoproteins for various tumor cell lines, in biodistribution of free and liposome-bound galectins and in their expression by breast and colorectal carcinomas with/without metastatic propensity. J Cancer Res Clin Oncol 125: 461–474.
3.
André, S., C. Unverzagt, S. Kojima, X. Dong, C. Fink, K. Kayser, H.-J. Gabius (1997) Neoglycoproteins with the synthetic complex biantennary nonasaccharide or its α2,3-/α2,6-sialylated derivatives: Their preparation, the assessment of their ligand properties for purified lectins, for tumor cells in vitro and in tissue sections and their biodistribution in tumor-bearing mice. Bioconjug Chem 8: 845–855.
4.
Aplin, J.D., J.C. Wriston (1981) Preparation, properties and applications of carbohydrate conjugates of proteins and lipids. CRC Crit Rev Biochem 10: 259–306.
5.
Asensio, J.L., F.J. Cañada, M. Bruix, A. Rodriguez-Romero, J. Jiménez-Barbero (1995) The interaction of hevein with N-acetylglucosamine-containing oligosaccharides. Solution structure of hevein complexed with chitobiose. Eur J Biochem 230: 621–633.
6.
Asensio, J.L., F.J. Cañada, M. Bruix, C. Gonzalez, N. Khiar, A. Rodriguez-Romero, J. Jiménez-Barbero (1998) NMR investigations of protein-carbohydrate interactions: Refined three-dimensional structure of the complex between hevein and methyl β-chitobioside. Glycobiology 8: 569–577.
7.
Asensio, J.L., J.F. Espinosa, H. Dietrich, F.J. Cañada, R.R. Schmidt, M. Martín-Lomas, S. André, H.-J. Gabius, J. Jiménez-Barbero (1999) Bovine heart galectin-1 selects a distinct (syn) conformation of C-lactose, a flexible lactose analogue. J Am Chem Soc 121: 8995–9000.
8.
Asensio, J.L., H.-C. Siebert, C.-W. von der Lieth, J. Laynez, M. Bruix, J.J. Beintema, F.J. Cañada, H.-J. Gabius, J. Jiménez-Barbero (2000) NMR investigations of protein-carbohydrate interactions. Structure determination of the complex between pseudohevein and N,N′,N′′-tri-O-acetylchitotriose and delineation of two different binding modes. Proteins, in press.
9.
Ashwell, G., J. Harford (1982) Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51: 531–554.
10.
Aspberg, A., S. Adam, G. Kostka, R. Timpl, D. Heinegård (1999) Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem 274: 20444–20449.
11.
Aspberg, A., R. Miura, S. Bourdoulous, M. Shimonaka, D. Heinegård, M. Schachner, E. Ruoslahti, Y. Yamaguchi (1997) The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci USA 94: 10116–10121.
12.
Avery, O.T., W.F. Göbel (1929) Chemo-immunological studies on conjugated carbohydrate proteins. II. Immunological specificity of synthetic sugar protein antigens. J Exp Med 50: 533–550.
13.
Barondes, S.H. (1981) Lectins: Their multiple endogenous cellular functions. Annu Rev Biochem 50: 207–231.
14.
Barondes, S.H. (1988) Bifunctional properties of lectins: Lectins redefined. Trends Biochem Sci 13: 480–482.
15.
Berger, E.G., E. Buddecke, J.P. Kamerling, A. Kobata, J.C. Paulson, J.F.G. Vliegenthart (1982) Structure, biosynthesis and function of glycoprotein glycans. Experientia 38: 1129–1162.
16.
Bharadwaj, S., H. Kaltner, E.Y. Korchagina, N.V. Bovin, H.-J. Gabius, A. Surolia (1999) Microcalorimetric indications for ligand binding as a function of the protein for galactoside-specific plant and avian lectins. Biochim Biophys Acta 1472: 191–196.
17.
Biermann, L., H.-J. Gabius, H.-W. Denker (1997) Neoglycoprotein-binding sites (endogenous lectins) in the fallopian tube, uterus and blastocyst of the rabbit during the preimplantation phase and implantation. Acta Anat 160: 159–171.
18.
Bovin, N.V., H.-J. Gabius (1995) Polymer-immobilized carbohydrate ligands: Versatile chemical tools for biochemistry and medical sciences. Chem Soc Rev 24: 413–421.
19.
Brockhausen, I., H. Schachter (1997) Glycosyltransferases involved in N- and O-glycan biosynthesis; in Gabius, H.-J., S. Gabius (eds): Glycosciences: Status and Perspectives. London, Chapman & Hall, pp 79–113.
20.
Brockhausen, I., J. Schutzbach, W. Kuhns (1998) Glycoproteins and their relationship to human disease. Acta Anat 161: 36–78.
21.
Bundle, D.R. (1997) Antibody-oligosaccharide interactions determined by crystallography; in Gabius, H.-J., S. Gabius (eds): Glycosciences: Status and Perspectives. London, Chapman & Hall, pp 311–331.
22.
Bundle, D.R., R. Alibés, S. Nilar, A. Otter, M. Warwas, P. Zhang (1998) Thermodynamic and conformational implications of glycosidic rotamers preorganized for binding. J Am Chem Soc 120: 5317–5318.
23.
Burley, S.K., G.A. Petsko (1986) Amino-aromatic interactions in proteins. FEBS Lett 203: 139–143.
24.
Bush, C.A., M. Martin-Pastor, A. Imberty (1999) Structure and conformation of complex carbohydrates of glycoproteins, glycolipids, and bacterial polysaccharides. Annu Rev Biophys Biomol Struct 28: 269–293.
25.
Cambillau, C. (1995) 3D structure. 1. The structural features of protein-carbohydrate interactions revealed by X-ray crystallography; in Montreuil, J., J.F.G. Vliegenthart, H. Schachter (eds): Glycoproteins. Amsterdam, Elsevier, pp 29–65.
26.
Carver, J.P. (1991) Experimental structure determination of oligosaccharides. Curr Opin Struct Biol 1: 716–720.
27.
Chervenak, M.C., E.J. Toone (1994) A direct measure of the contribution of solvent reorganization to the enthalpy of ligand binding. J Am Chem Soc 116: 10533–10539.
28.
Cook, G.M.W. (1994) Recognising the attraction of sugars at the cell surface. Bioessays 16: 287–295.
29.
Cumming, D.A., J.P. Carver (1987) Virtual and solution conformations of oligosaccharides. Biochemistry 26: 6664–6676.
30.
Dam, T.K., B.S. Cavada, T.B. Grangeiro, C.F. Santos, F.A.M. de Sousa, S. Oscarson, C.F. Brewer (1998) Diocleinae lectins are a group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates. J Biol Chem 273: 12082–12088.
31.
Danguy, A., C. Decaestecker, F. Genten, I. Salmon, R. Kiss (1998) Application of lectins and neoglycoconjugates in histology and pathology. Acta Anat 161: 206–218.
32.
Danguy, A., F. Genten, H.-J. Gabius (1991) Histochemical evaluations of application of biotinylated neoglycoproteins for the detection of endogenous sugar receptors in fish skin. Eur J Basic Appl Histochem 35: 341–357.
33.
Danguy, A., K. Kayser, N.V. Bovin, H.-J. Gabius (1995) The relevance of neoglycoconjugates for histology and pathology. Trends Glycosci Glycotechnol 7: 261–275.
34.
Davis, A.M., S.J. Teague (1999) Die Bedeutung der Balance von Wasserstoffbrückenbindungen und hydrophoben Wechselwirkungen im Wirkstoff-Rezeptor-Komplex. Angew Chem 111: 778–792.
35.
Denker, H.-W. (1970a) Topochemie hochmolekularer Kohlenhydratsubstanzen in Frühentwicklung und Implantation des Kaninchens. I. Allgemeine Lokalisierung und Charakterisierung hochmolekularer Kohlenhydratsubstanzen in frühen Embryonalstadien. Zool Jahrb Abt Allg Zool Physiol 75: 141–245.
36.
Denker, H.-W. (1970b) Topochemie hochmolekularer Kohlenhydratsubstanzen in Frühentwicklung und Implantation des Kaninchens. II. Beiträge zu entwicklungsphysiologischen Fragestellungen. Zool Jahrb Abt Allg Zool Physiol 75: 246–308.
37.
Denker, H.-W. (1983) Basic aspects of ovoimplantation; in Wynn, R.M. (ed): Obstetrics and Gynecology Annual. Norwalk, Appleton Century Crofts, vol 12, pp 15–42.
38.
Denker, H.-W. (1993) Implantation: A cell biological paradox. J Exp Zool 266: 541–558.
39.
Denker, H.-W., J.D. Aplin (1990) Trophoblast Invasion and Endometrial Receptivity. Novel Aspects of the Cell Biology of Embryo Implantation. Trophoblast Research. New York, Plenum Press, vol 4.
40.
Dougherty, D.A. (1996) Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science 271: 163–168.
41.
Doyle, M.L. (1997) Characterization of binding interactions by isothermal titration calorimetry. Curr Opin Biotechnol 8: 31–35.
42.
Draper, D.E. (1999) Themes in RNA-protein recognition. J Mol Biol 293: 255–270.
43.
Drickamer, K. (1999) C-type lectin-like domains. Curr Opin Struct Biol 9: 585–590.
44.
Drickamer, K., M.E. Taylor (1993) Biology of animal lectins. Annu Rev Cell Biol 9: 237–264.
45.
Du, M.-H., U. Spohr, R.U. Lemieux (1994) The recognition of three different epitopes for the H-type 2 human blood group determinant by lectins of Ulex europaeus, Galactia tenuiflora and Psophocarpus tetragonolobus (winged bean). Glycoconj J 11: 443–461.
46.
Dwek, R.A., C.J. Edge, D.J. Harvey, M.R. Wormald (1993) Analysis of glycoprotein-associated oligosaccharides. Annu Rev Biochem 62: 65–100.
47.
Espinosa, J.-F., F.J. Cañada, J.L. Asensio, M. Martin-Pastor, H. Dietrich, M. Martin-Lomas, R.R. Schmidt, J. Jiménez-Barbero (1996) Experimental evidence of conformational differences between C-glycosides and O-glycosides in solution and in the protein-bound state: The C-lactose/O-lactose case. J Am Chem Soc 118: 10862–10871.
48.
Espinosa, J.-F., E. Montero, A. Vian, J.L. García, H. Dietrich, R.R. Schmidt, M. Martín-Lomas, A. Imberty, F.J. Cañada, J. Jiménez-Barbero (1998) Escherichia coli β-galactosidase recognizes a high-energy conformation of C-lactose, a nonhydrolyzable substrate analogue. NMR and modeling studies of the molecular complex. J Am Chem Soc 120: 1309–1318.
49.
Ewart, K.V., Z. Li, D.S.C. Yang, G.L. Fletcher, C.L. Hew (1998) The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins. Biochemistry 37: 4080–4085.
50.
Ewart, K.V., Q. Lin, C.L. Hew (1999) Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci 55: 271–283.
51.
Fernández, P., J. Jiménez-Barbero, M. Martín-Lomas, D. Solís, T. Díaz-Mauriño (1994) Involvement of the glucose moiety in the molecular recognition of methyl b-lactoside by ricin: Synthesis, conformational analysis, and binding studies of different derivatives at the C-3 region. Carbohydr Res 256: 223–244.
52.
Fischer, E. (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27: 2985–2993.
53.
Gabius, H.-J. (1987a) Endogenous lectins in tumors and the immune system. Cancer Invest 5: 39–46.
54.
Gabius, H.-J. (1987b) Vertebrate lectins and their possible roles in fertilization, development and tumor biology. In Vivo 1: 75–84.
55.
Gabius, H.-J. (1988) Tumor lectinology: At the intersection of carbohydrate chemistry, biochemistry, cell biology and oncology. Angew Chem Int Ed 27: 1267–1276.
56.
Gabius, H.-J. (1991) Detection and functions of mammalian lectins – with emphasis on membrane lectins. Biochim Biophys Acta 1071: 1–18.
57.
Gabius, H.-J. (1994) Non-carbohydrate binding partners/domains of animal lectins. Int J Biochem 26: 469–477.
58.
Gabius, H.-J. (1997a) Animal lectins. Eur J Biochem 243: 543–576.
59.
Gabius, H.-J. (1997b) Concepts of tumor lectinology. Cancer Invest 15: 454–464.
60.
Gabius, H.-J. (1998) The how and why of protein-carbohydrate interaction: A primer to the theoretical concept and a guide to application in drug design. Pharm Res 15: 23–30.
61.
Gabius, H.-J. (2000) Biological information transfer beyond the genetic code: The sugar code. Naturwissenschaften 87: 108–121.
62.
Gabius, H.-J., S. André, A. Danguy, K. Kayser, S. Gabius (1994) Detection and quantification of carbohydrate-binding sites on cell surfaces and in tissue sections by neoglycoproteins. Methods Enzymol 242: 37–46.
63.
Gabius, H.-J., S. Gabius (1992) Chemical and biochemical strategies for the preparation of glycohistochemical probes and their application in lectinology. Adv Lectin Res 5: 123–157.
64.
Gabius, H.-J., S. Gabius (1993) Lectins and Glycobiology. Berlin, Springer. Gabius, H.-J., S. Gabius (1997) Glycosciences: Status and Perspectives. London, Chapman & Hall.
65.
Gabius, H.-J., S. Gabius, T.V. Zemlyanukhina, N.V. Bovin, U. Brinck, A. Danguy, S.S. Joshi, K. Kayser, J. Schottelius, F. Sinowatz, L.F. Tietze, F. Vidal-Vanaclocha, J.-P. Zanetta (1993) Reverse lectin histochemistry: Design and application of glycoligands for detection of cell and tissue lectins. Histol Histopathol 8: 369–383.
66.
Gabius, S., K. Kayser, N.V. Bovin, N. Yamazaki, S. Kojima, H. Kaltner, H.-J. Gabius (1996) Endogenous lectins and neoglycoconjugates: A sweet approach to tumor diagnosis and targeted drug delivery. Eur J Pharm Biopharm 42: 250–261.
67.
Gabius, H.-J., A. Romero (1998) Structure and functions of animal lectins. Carbohydr Eur 23: 16–21.
68.
Gabius, S., V. Schirrmacher, H. Franz, S.S. Joshi, H.-J. Gabius (1990) Analysis of cell surface sugar receptor expression by neoglycoenzyme binding and adhesion to plastic-immobilized neoglycoproteins for related weakly and strongly metastatic cell lines of murine tumor model systems. Int J Cancer 46: 500–507.
69.
Gabius, H.-J., C. Unverzagt, K. Kayser (1998) Beyond plant lectin histochemistry: Preparation and application of markers to visualize the cellular capacity for protein-carbohydrate recognition. Biotech Histochem 73: 263–277.
70.
Geyer, H., R. Geyer (1998) Strategies for glycoconjugate analysis. Acta Anat 161: 18–35.
71.
Gilleron, M., H.-C. Siebert, H. Kaltner, C.-W. von der Lieth, T. Kozár, K.M. Halkes, E.Y. Korchagina, N.V. Bovin, H.-J. Gabius, J.F.G. Vliegenthart (1998) Conformer selection and differential restriction of ligand mobility by a plant lectin. Conformational behavior of Galβ1–3GlcNAcβ1-R, Galβ1–3GalNAcβ1-R and Galβ1–2Galβ1-R’ in the free state and complexed with mistletoe lectin as revealed by random walk and conformational clustering molecular mechanics calculations, molecular dynamics simulations and nuclear Overhauser experiments. Eur J Biochem 252: 416–427.
72.
Göbel, W.F., O.T. Avery (1929) Chemo-immunological studies on conjugated carbohydrate proteins. I. The synthesis of p-aminophenyl β-glucoside, p-aminophenyl β-galactoside, and their coupling with serum globulin. J Exp Med 50: 521–531.
73.
Gronwald, W., M.C. Loewen, B. Lix, A.J. Daugulis, F.D. Sönnichsen, P.L. Davies, B.D. Sykes (1998) The solution structure of type II antifreeze protein reveals a new member of the lectin family. Biochemistry 37: 4712–4721.
74.
Haataja, S., K. Tikkanen, U. Nilsson, G. Magnusson, K.-A. Karlsson, J. Finne (1994) Oligosaccharide-receptor interaction of the Galα1–4Gal binding adhesin of Streptococcus suis. Combining site architecture and characterization of two variant adhesin specificities. J Biol Chem 269: 27466–27472.
75.
Hardy, B.J. (1997) The glycosidic linkage flexibility and time-scale similarity hypotheses. J Mol Struct 395–396: 187–200.
76.
Harris, R., G.R. Kiddle, R.A. Field, M.J. Milton, B. Ernst, J.L. Magnani, S.W. Homans (1999) Stable-isotope-assisted NMR studies on 13C-enriched sialyl Lewisx in solution and bound to E-selectin. J Am Chem Soc 121: 2546–2551.
77.
Hermentin, P., R. Witzel (1999) The hypothetical N-glycan charge. A number to characterize protein N-glycosylation. Pharm Pharmacol Commun 5: 33–43.
78.
Hester, G., H. Kaku, I.J. Goldstein, C.S. Wright (1995) Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nature Struct Biol 2: 472–479.
79.
Hooper, L.V., S.M. Manzella, J.U. Baenziger (1997) The biology of sulfated oligosaccharides; in Gabius, H.-J., S. Gabius (eds): Glycosciences: Status and Perspectives. London, Chapman & Hall, pp 261–276.
80.
Horan, N., L. Yan, H. Isobe, G.M. Whitesides, D. Kahne (1999) Nonstatistical binding of a protein to clustered carbohydrates. Proc Natl Acad Sci USA 96: 11782–11786.
81.
Hounsell, E.F. (1997) Methods of glycoconjugate analysis; in Gabius, H.-J., S. Gabius (eds): Glycosciences: Status and Perspectives. London, Chapman & Hall, pp 15–29.
82.
Imberty, A. (1997) Oligosaccharide structures: Theory versus experiment. Curr Opin Struct Biol 7: 617–623.
83.
Jardetzky, O. (1980) On the nature of molecular conformations inferred from high-resolution NMR. Biochim Biophys Acta 621: 227–232.
84.
Jennings, H.J., R.K. Sood (1994) Synthetic glycoconjugates as human vaccines; in Lee, Y.C. R.T. Lee (eds): Neoglycoconjugates. Preparation and Applications. San Diego, Academic Press, pp 325–371.
85.
Jiménez-Barbero, J., J.L. Asensio, F.J. Cañada, A. Poveda (1999) Free and protein-bound carbohydrate structures. Curr Opin Struct Biol 9: 549–555.
86.
Kaltner, H., B. Stierstorfer (1998) Animal lectins as cell adhesion molecules. Acta Anat 161: 162–179.
87.
Kapitonov, D., R.K. Yu (1999) Conserved domains of glycosyltransferases. Glycobiology 9: 961–978.
88.
Kayser, K., N.V. Bovin, E.Y. Korchagina, C. Zeilinger, F.-Y. Zeng, H.-J. Gabius (1994) Correlation of expression of binding sites for synthetic blood group A-, B-, and H-trisaccharides and for sarcolectin with survival of patients with bronchial carcinoma. Eur J Cancer 30A: 653–657.
89.
Kayser, K., H.-J. Gabius (1999) The application of thermodynamic principles to histochemical and morphometric tissue research: Principles and practical outline with focus on glycosciences. Cell Tissue Res 296: 443–455.
90.
Kiessling, L.L., N.L. Pohl (1996) Strength in numbers: Non-natural polyvalent carbohydrate derivatives. Chem Biol 3: 71–77.
91.
Kilpatrick, D.C., C. Green (1992) Lectins as blood typing reagents. Adv Lectin Res 5: 51–94.
92.
Kishore, U., P. Eggleton, K.B.M. Reid (1997) Modular organization of carbohydrate recognition domains in animal lectins. Matrix Biol 15: 583–592.
93.
Kopitz, J. (1997) Glycolipids: Structure and function; in Gabius, H.-J., S. Gabius (eds): Glycosciences: Status and Perspectives. London, Chapman & Hall, pp 163–189.
94.
Kopitz, J., C. von Reitzenstein, M. Burchert, M. Cantz, H.-J. Gabius (1998) Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem 273: 11205–11211.
95.
Kozár, T., C.-W. von der Lieth (1997) Efficient modeling protocols for oligosaccharides: From vacuum to solvent. Glycoconjug J 14: 925–933.
96.
Kraulis, P.J. (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950.
97.
Krüpe, M. (1956) Blutgruppenspezifische pflanzliche Eiweisskörper, Phytagglutinine. Stuttgart, Enke.
98.
Kuntz, I.D., K. Chen, K.A. Sharp, P.A. Kollman (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96: 9997–10002.
99.
Laine, R.A. (1997) The information-storing potential of the sugar code; in Gabius H.-J., S. Gabius (eds): Glycosciences: Status and Perspectives. London, Chapman & Hall, pp 1–14.
100.
Lee, R.T. (1982) Binding site of the rabbit liver lectin specific for galactose/N-acetylgalactosamine. Biochemistry 21: 1045–1050.
101.
Lee, Y.C. (1992) Biochemistry of carbohydrate-protein interaction. FASEB J 6: 3193–3200.
102.
Lee, Y.C., R.T. Lee (1991) Neoglycoconjugates: Fundamentals and recent progress; in Gabius, H.-J., S. Gabius (eds): Lectins and Cancer. Heidelberg, Springer, pp 53–70.
103.
Lee, R.T., Y.C. Lee (1994a) Enhanced biochemical affinities of multivalent neoglycoconjugates; in Lee, Y.C., R.T. Lee (eds): Neoglycoconjugates. Preparation and Applications. San Diego, Academic Press, pp 23–50.
104.
Lee, Y.C., R.T. Lee (1994b) Neoglycoconjugates. Preparation and Applications. San Diego, Academic Press.
105.
Lemieux, R.U. (1989) The origin of the specificity in the recognition of oligosaccharides by proteins. Chem Soc Rev 18: 347–374.
106.
Lemieux, R.U. (1996) How water provides the impetus for molecular recognition in aqueous solution. Acc Chem Res 29: 373–380.
107.
Levi, G., V.I. Teichberg (1981) Isolation and physicochemical characterization of electrolectin, a β-D-galactoside-binding lectin from the electric organ of Electrophorus electricus. J Biol Chem 256: 5735–5740.
108.
Lian, L.Y., I.L. Barsukov, M.J. Sutcliffe, K.H. Sze, G.C.K. Roberts (1994) Protein-ligand interactions: Exchange processes and determination of ligand conformation and protein-ligand contacts. Methods Enzymol 239: 657–700.
109.
Lis, H., N. Sharon (1986) Lectins as molecules and as tools. Annu Rev Biochem 55: 35–67.
110.
Lis, H., N. Sharon (1998) Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98: 637–674.
111.
Loewen, M.C., W. Gronwald, F.D. Sönnichsen, B.D. Sykes, P.L. Davies (1998) The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin. Biochemistry 37: 17745–17753.
112.
Loris, R., T. Hamelryck, J. Bouckaert, L. Wyns (1998) Legume lectin structure. Biochim Biophys Acta 1383: 9–36.
113.
Lü, S., S. Liang, X. Gu (1999) Three-dimensional structure of Selenocosmia huwena lectin-I (SHL-I) from the venom of the spider Selenocosmia huwena by 2D-NMR. J Protein Chem 18: 609–617.
114.
Mammen, M., S.-K. Choi, G.M. Whitesides (1998) Polyvalente Wechselwirkungn in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren. Angew Chem 110: 2908–2953.
115.
Mann, K., I.M. Weiss, S. André, H.-J. Gabius, M. Fritz (2000) The amino acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity. Eur J Biochem 267: 5257–5264.
116.
Mann, P.L., R.E. Waterman (1998) Glycocoding as an information management system in embryonic development. Acta Anat 161: 153–161.
117.
Marshall, R.D. (1972) Glycoproteins. Annu Rev Biochem 41: 673–702.
118.
Martin, J.L., S.G. Withers, L.N. Johnson (1990) Comparison of the binding of glucose and glucose-1-phosphate derivatives to T state glycogen phosphorylase b. Biochemistry 29: 10745–10757.
119.
Martins, J.C., D. Maes, R. Loris, H.A.M. Pepermans, L. Wyns, R. Willem, P. Verheyden (1996) 1H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus. J Mol Biol 258: 322–333.
120.
May, A.P., R.C. Robinson, M. Vinson, P.R. Crocker, E.Y. Jones (1998) Crystal structure of the N-terminal domain of sialoadhesin in complex with 3′-sialyllactose at 1.85 Å resolution. Mol Cell 1: 719–728.
121.
Mitchell, S.W. (1860) Researches upon the venom of the rattlesnake. Smithsonian Contrib Knowledge XII: 89–90.
122.
Miura, R., A. Aspberg, I.M. Ethell, K. Hagihara, R.L. Schnaar, E. Ruoslahti, Y. Yamaguchi (1999) The proteoglycan lectin domain binds sulfated cell surface glycolipids and promotes cell adhesion. J Biol Chem 274: 11431–11438.
123.
Munday, J., H. Floyd, P.R. Crocker (1999) Sialic acid-binding receptors (siglecs) expressed by macrophages. J Leukoc Biol 66: 705–711.
124.
Navarre, N., N. Amiot, A. van Oijen, A. Imberty, A. Poveda, J. Jiménez-Barbero, A. Cooper, M.A. Nutley, G.-J. Boons (1999) Synthesis and conformational analysis of a conformationally constrained trisaccharide, and complexation properties with Concanavalin A. Chem Eur J 5: 2281–2294.
125.
Ng, K.K.S., K. Drickamer, W.I. Weis (1996) Structural analysis of monosaccharide recognition by rat liver mannose-binding protein. J Biol Chem 271: 663–674.
126.
Ni, F., H.A. Scheraga (1994) Use of transferred nuclear Overhauser effect to determine the conformations of ligands bound to proteins. Acc Chem Res 27: 257–264.
127.
Nishio, M., Y. Umezawa, M. Hirota, Y. Takeuchi (1995) The CH/π interaction: Significance in molecular recognition. Tetrahedron 51: 8665–8701.
128.
Olden, K., J.B. Parent, S.L. White (1982) Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim Biophys Acta 650: 209–232.
129.
Pearlman, D.A. (1994) How is an NMR structure best defined? An analysis of molecular dynamics distance-based approaches. J Biomol NMR 4: 1–16.
130.
Pérez, S., A. Imberty, J.P. Carver (1994) Molecular modeling: An essential component in the structure determination of oligosaccharides and polysaccharides. Adv Comput Biol 1: 147–202.
131.
Pérez, S., A. Imberty, S.B. Engelsen, J. Gruza, K. Mazeau, J. Jiménez-Barbero, A. Poveda, J.-F. Espinosa, B.P. van Eyck, G. Johnson, A.D. French, M.L.C.E. Kouwijzer, P.D.J. Grootenuis, A. Bernardi, L. Raimondi, H. Senderowitz, V. Durier, G. Vergoten, K. Rasmussen (1999) A comparison and chemometric analysis of several molecular mechanics force fields and parameter sets applied to carbohydrates. Carbohydr Res 314: 141–155.
132.
Peters, T., B.M. Pinto (1996) Structure and dynamics of oligosaccharides: NMR and modeling studies. Curr Opin Struct Biol 6: 710–720.
133.
Poppe, L., G.S. Brown, J.S. Philo, P.V. Nikrad, B.H. Shah (1997) Conformation of sLex tetrasaccharide, free in solution and bound to E-, P-, and L-selectin. J Am Chem Soc 119: 1727–1736.
134.
Poveda, A., J. Jiménez-Barbero (1998) NMR studies of carbohydrate-protein interaction in solution. Chem Soc Rev 27: 133–143.
135.
Powell, L.D., A. Varki (1995) I-type lectins. J Biol Chem 270: 14243–14246.
136.
Probstmeier, R., P. Pesheva (1999) I-Type lectins in the nervous system. Prog Neurobiol 58: 163–184.
137.
Quiocho, F.A. (1986) Carbohydrate-binding proteins: Tertiary structures and protein-sugar interactions. Annu Rev Biochem 55: 287–315.
138.
Quiocho, F.A., P.S. Ledvina (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: Variation of common themes. Mol Microbiol 20: 17–25.
139.
Quiocho, F.A., J.C. Spurlino, L.E. Rodseth (1997) Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure 5: 997–1015.
140.
Quiocho, F.A., N.K. Vyas (1984) Novel stereospecificity of the L-arabinose-binding protein. Nature 310: 381–386.
141.
Ravishankar, R., A. Surolia, M. Vijayan, S. Lim, Y. Kishi (1998) Preferred conformation of C-lactose at the free and peanut lectin bound states. J Am Chem Soc 120: 11297–11303.
142.
Reuter, G., H.-J. Gabius (1999) Eukaryotic glycosylation – Whim of nature or multipurpose tool? Cell Mol Life Sci 55: 368–422.
143.
Rini, J.M. (1995) Lectin structure. Annu Rev Biophys Biomol Struct 24: 551–577.
144.
Rivera-Sagredo, A., D. Solís, T. Díaz-Mauriño, M. Jiménez-Barbero, M. Martín-Lomas (1991) Studies on the molecular recognition of synthetic methyl β-lactoside analogs by ricin, a cytotoxic plant lectin. Eur J Biochem 197: 217–228.
145.
Rivera-Sagredo, A., J. Jiménez-Barbero, M. Martín-Lomas, D. Solís, T. Díaz-Mauriño (1992) Studies on the molecular recognition of synthetic methyl β-lactoside analogs by Ricinus communis agglutinin. Carbohydr Res 232: 207–226.
146.
Roberts, D.L., D.J. Weix, N.M. Dahms, J.-J.P. Kim (1998) Molecular basis of lysosomal enzyme recognition: Three-dimensional structure of the cation-dependent mannose-6-phosphate receptor. Cell 93: 639–648.
147.
Roseman, S. (1970) The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intracellular adhesion. Chem Phys Lipids 5: 270–297.
148.
Roy, R. (1996a) Blue-prints, synthesis and applications of glycopolymers. Trends Glycosci Glycotechnol 8: 79–99.
149.
Roy, R. (1996b) Synthesis and some applications of chemically defined multivalent glycoconjugates. Curr Opin Struct Biol 6: 692–702.
150.
Roy, R. (1997) Recent developments in the rational design of multivalent glycoconjugates. Top Curr Chem 187: 241–274.
151.
Rudd, P.M., R.A. Dwek (1997) Glycosylation: Heterogeneity and the 3D structure of proteins. Crit Rev Biochem Mol Biol 32: 1–100.
152.
Rüdiger, H., P. Rougé (1998) Structure and functions of plant lectins. Carbohydr Eur 23: 18–22.
153.
Rüdiger, H., H.-C. Siebert, D. Solís, J. Jiménez-Barbero, A. Romero, C.-W. von der Lieth, T. Díaz-Mauriño, H.-J. Gabius (2000) Medicinal chemistry based on the sugar code: Fundamentals of lectinology and experimental strategies with lectins as targets. Curr Med Chem 7: 389–416.
154.
Schachter, H. (ed) (1999) Molecular basis of glycoconjugate disease. Biochim Biophys Acta 1455: 61–418.
155.
Sears, P., C.-H. Wong (1998) Enzyme action in glycoprotein synthesis. Cell Mol Life Sci 54: 223–252.
156.
Sharon, N. (1984) Glycoproteins. Trends Biochem Sci 9: 198–202.
157.
Sharon, N. (1998) Glycoproteins now and then: A personal account. Acta Anat 161: 7–17.
158.
Sharon, N., H. Lis (1972) Lectins: Cell-agglutinating and sugar-specific proteins. Science 177: 949–958.
159.
Sharon, N., H. Lis (1997) Glycoproteins: Structure and function; in Gabius, H.-J., S. Gabius (eds): Glycosciences: Status and Perspectives. London, Chapman & Hall, pp 133–162.
160.
Siebert, H.-C., R. Adar, R. Arango, M. Burchert, H. Kaltner, G. Kayser, E. Tajkhorshid, C.-W. von der Lieth, R. Kaptein, N. Sharon, J.F.G. Vliegenthart, H.-J. Gabius (1997b) Involvement of laser photo CIDNP (chemically induced dynamic nuclear polarization)-reactive amino acid side chains in ligand binding by galactoside-specific lectins in solution. Similarities in the role of tryptophan/tyrosine residues for ligand binding between a plant agglutinin and mammalian/avian galectins and the detection of an influence of single-site mutagenesis on surface presentation of spatially separated residues. Eur J Biochem 249: 27–38.
161.
Siebert, H.-C., S. André, J.L. Asensio, F.J. Cañada, X. Dong, J.F. Espinosa, M. Frank, M. Gilleron, H. Kaltner, T. Kozár, N.V. Bovin, C.-W. von der Lieth, J.F.G. Vliegenthart, J. Jiménez-Barbero, H.-J. Gabius (2000) Experimental demonstration of potential for maintenance of carbohydrate-protein (lectin and immunoglobulin G) interactions in an aprotic solvent leading to a new combined computational and NMR-spectroscopical strategy for the identification of additional conformational constraints of the bound ligand. Submitted.
162.
Siebert, H.-C., M. Gilleron, H. Kaltner, C.-W. von der Lieth, T. Kozár, N.V. Bovin, E.Y. Korchagina, J.F.G. Vliegenthart, H.-J. Gabius (1996) NMR-based, molecular dynamics- and random walk molecular mechanics-supported study of conformational aspects of a carbohydrate ligand (Galβ1–2Galβ1-R) for an animal galectin in the free and in the bound state. Biochem Biophys Res Commun 219: 205–212.
163.
Siebert, H.-C., C.-W. von der Lieth, M. Gilleron, G. Reuter, J. Wittmann, J.F.G. Vliegenthart, H.-J. Gabius (1997a) Carbohydrate-protein interaction; in Gabius H.-J., S. Gabius (eds): Glycosciences: Status and Perspectives. London, Chapman & Hall, pp 291–310.
164.
Siebert, H.-C., C.-W. von der Lieth, R. Kaptein, J.J. Beintema, K. Dijkstra, N. van Nuland, U.M.S. Soedjanaatmadja, A. Rice, J.F.G. Vliegenthart, C.S. Wright, H.-J. Gabius (1997c) Role of aromatic amino acids in carbohydrate binding of plant lectins. Laser photo CIDNP (chemically induced dynamic nuclear polarization) study of hevein domain-containing lectins. Proteins 28: 268–284.
165.
Sinowatz, F., J. Plendl, S. Kölle (1998) Protein-carbohydrate interactions during fertilization. Acta Anat 161: 196–205.
166.
Solís, D., T. Díaz-Mauriño (1997) Analysis of protein-carbohydrate interaction by engineered ligands; in Gabius, H.-J., S. Gabius (eds): Glycosciences: Status and Perspectives. London, Chapman & Hall, pp 345–354.
167.
Solís, D., P. Fernández, T. Díaz-Mauriño, J. Jiménez-Barbero, M. Martín-Lomas (1993) Hydrogen-bonding pattern of methyl β-lactoside binding to the Ricinus communis lectins. Eur J Biochem 214: 677–683.
168.
Solís, D., J. Jiménez-Barbero, M. Martín-Lomas, T. Díaz-Mauriño (1994) Probing hydrogen-bonding interactions of bovine heart galectin-1 and methyl β-lactoside by use of engineered ligands. Eur J Biochem 223: 107–114.
169.
Solís, D., A. Romero, H. Kaltner, H.-J. Gabius, T. Díaz-Mauriño (1996) Different architecture of the combining sites of two chicken galectins revealed by chemical-mapping studies with synthetic ligand derivatives. J Biol Chem 271: 12744–12748.
170.
Sönnichsen, F.D., P.L. Davies, B.D. Sykes (1999) NMR structural studies on antifreeze proteins. Biochem Cell Biol 76: 284–293.
171.
Spurlino, J.C., G.-Y. Lu, F.A. Quiocho (1991) The 2.3 Å resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem 266: 5202–5219.
172.
Stowell, C.P., Y.C. Lee (1980) Neoglycoproteins: The preparation and application of synthetic glycoproteins. Adv Carbohydr Chem Biochem 37: 225–281.
173.
Sundari, C.S., D. Balasubramanian (1997) Hydrophobic surfaces in saccharide chains. Prog Biophys Mol Biol 67: 183–216.
174.
Thomson, J., Y. Liu, J.M. Sturtevant, F.A. Quiocho (1998) A thermodynamic study of the binding of linear and cyclic oligosaccharides to the maltodextrin-binding protein of Escherichia coli. Biophys Chem 70: 101–108.
175.
Timoshenko, A.V., I.V. Gorudko, S.N. Cherenkevich, H.-J. Gabius (1999a) Differential potency of two crosslinking plant lectins to induce formation of haptenic sugar-resistant aggregates of rat thymocytes by post-binding signaling. FEBS Lett 449: 75–78.
176.
Timoshenko, A.V., I.V. Gorudko, H. Kaltner, H.-J. Gabius (1999b) Dissection of the impact of various intracellular signaling pathways on rat thymocytes after initial lectin-dependent cell association using a plant lectin as model and target-selective inhibitors. Mol Cell Biochem 197: 137–145.
177.
Toone, E.J. (1994) Structure and energetics of protein-carbohydrate complexes. Curr Opin Struct Biol 4: 719–728.
178.
Tormo, J., K. Natarajan, D.H. Margulies, R.A. Mariuzza (1999) Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402: 623–631.
179.
Varela, P.F., D. Solís, T. Díaz-Mauriño, H. Kaltner, H.-J. Gabius, A. Romero (1999) The 2.15 Å crystal structure of CG-16, the developmentally regulated homodimeric chicken galectin. J Mol Biol 294: 537–549.
180.
Varki, A. (1993) Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3: 97–130.
181.
Varki, A. (1994) Selectin ligands. Proc Natl Acad Sci USA 91: 7390–7397.
182.
Varki, A. (1996) ‘Unusual’ modifications and variations of vertebrate oligosaccharides: Are we missing the flowers for the trees? Glycobiology 6: 707–710.
183.
Vasta, G.R., M. Quesenberry, H. Ahmed, N. O’Leary (1999) C-type lectins and galectins mediate innate and adaptive immune functions: Their roles in the complement activation pathway. Dev Comp Immunol 23: 401–420.
184.
Vermersch, P.S., J.J.G. Tesmer, F.A. Quiocho (1992) Protein-ligand energetics assessed using deoxy and fluorodeoxy sugars in equilibrium binding and high resolution crystallographic studies. J Mol Biol 226: 923–929.
185.
Villalobo, A., H.-J. Gabius (1998) Signaling pathways for transduction of the initial message of the glycocode into cellular responses. Acta Anat 161: 110–129.
186.
Vliegenthart, J.F.G., F. Casset (1998) Novel forms of protein glycosylation. Curr Opin Struct Biol 8: 565–571.
187.
von der Lieth, C.-W., T. Kozár, W.E. Hull (1997) A (critical) survey of modeling protocols used to explore the conformational space of oligosaccharides. J Mol Struct 395–396: 225–244.
188.
von der Lieth, C.-W., H.-C. Siebert, T. Kozár, M. Burchert, M. Frank, M. Gilleron, H. Kaltner, G. Kayser, E. Tajkhorshid, N.V. Bovin, J.F.G. Vliegenthart, H.-J. Gabius (1998) Lectin ligands: New insights into their conformations and their dynamic behavior and the discovery of conformer selection by lectins. Acta Anat 161: 91–109.
189.
Vyas, N.K. (1991) Atomic features of protein-carbohydrate interactions. Curr Opin Struct Biol 1: 732–740.
190.
Wacowich-Sgarbi, S.A., D.R. Bundle (1999) Constrained H-type 2 blood group trisaccharide synthesized in a bioactive conformation via intramolecular glycosylation. J Org Chem 64: 9080–9089.
191.
Watkins, W.M. (1955) Blood group substances. Science 152: 172–181.
192.
Watkins, W.M. (1999) A half century of blood-group antigen research: Some personal recollections. Trends Glycosci Glycotechnol 11: 391–411.
193.
Watkins, W.M., W.T.J. Morgan (1952) Neutralisation of the anti-H agglutinin in eel serum by simple sugars. Nature 169: 825–826.
194.
Weigel, P.H. (1992) Mechanisms and control of glycoconjugate turnover; in Allen, H.J., E.C. Kisailus (eds): Glycoconjugates: Composition, Structure and Function. New York, Dekker, pp 421–497.
195.
Weis, W.I., K. Drickamer (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65: 441–473.
196.
Winterburn, P.J., C.F. Phelps (1972) The significance of glycosylated proteins. Nature 236: 147–151.
197.
Woods, R.J. (1998) Computational carbohydrate chemistry: What theoretical methods can tell us. Glycoconj J 15: 209–216.
198.
Woods, R.J., R.A. Dwek, C.J. Edge, B. Fraser-Reid (1995) Molecular mechanical and molecular dynamical simulations of glycoproteins and oligosaccharides. J Phys Chem 99: 3832–3846.
199.
Zanetta, J.-P. (1998) Structure and functions of lectins in the central and peripheral nervous system. Acta Anat 161: 180–195.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.