Abstract
The present study was designed to examine the distribution of interglobular dentine in human tooth roots. The material comprised 17 teeth, of which 3 were premolars extracted for orthodontic reasons from children 10–12 years of age and the other teeth (4 incisors, 3 canines and 7 molars) were extracted for periodontitis from individuals aged 32–63 years. All teeth were free of caries and cervical dentine defects. Ground sections of the teeth cut longitudinally were stained with basic fuchsin and observed by fluorescence and confocal microscopy as well as transmitted light microscopy. Basic fuchsin stained the dentinal tubules, interglobular dentine and the granular layer of Tomes. These structures appeared intense blue to faint violet with transmitted light microscopy, whereas their staining displayed intense fluorescence with fluorescence microscopy. Therefore, the interglobular dentine could be detected more sensitively with fluorescence and confocal microscopy than with transmitted light microscopy. Typical interglobular dentine was present in coronal dentine in most of the teeth. In the radicular dentin, position and size of the interglobular dentine was different among the teeth examined. Most of the teeth had the interglobular dentine in the cervical part of the roots (type A). Two premolars displayed the interglobular dentine in the coronal half of the root (type B). The types A and B contained large interglobular areas. A small amount of interglobular dentine was restricted to the apical half of the roots of two canines and one molar (type C). In contrast to types A and B which were seen at both labial or buccal and lingual sides of roots, the interglobular dentine of type C was seen only at one side, labial or lingual. Some of the tooth roots did not show any interglobular dentine (type D). Most of the incisors, canines and premolar were types A, B, and C, respectively, and the molars were mixed types A, C, and D. These results suggest that the factors affecting dentinogenesis during root formation are unique for each tooth.