Introduction: This study compared the diagnostic accuracy of interproximal caries detection using intraoral bitewing radiographs, assessed by both human operators and an artificial intelligence (AI) program, a near-infrared reflectance imaging (NIRI) system with operator-conducted assessment, and histological evaluation as the reference. Methods: 100 posterior teeth with or without caries were mounted on 10 typodonts. Initially, 180 surfaces were examined, but eight were excluded for different reasons. Therefore, 171 proximal surfaces were analyzed. NIRI imaging was performed using the iTero Element 5D®, and radiographs were analyzed by operators and an AI program, Denti.AI. Results were compared with histology, assessing sensitivity (Se), specificity (Sp), positive (PPV) and negative (NPV) predictive values, F1-score, areas under receiver operating characteristic curves (AUCs), and the Fleiss Kappa coefficient (k). Results: The statistical analysis results for each diagnostic test were as follows: examiner radiographic assessment (Se = 52%, Sp = 84.6%, PPV = 71.6%, NPV = 70.3%, F1-score = 60%, AUC = 0.684, k = 0.459); NIRI (Se = 37%, Sp = 98.9%, PPV = 96.4%, NPV = 67.8%, F1-score = 52%, AUC = 0.673, k = 0.475); AI-guided radiographic assessment (Se = 13.7%, Sp = 95.9%, PPV = 71%, NPV = 59.8%, F1-score = 23%, AUC = 0.548). McNemar’s test showed a p < 0.05 for all diagnostic tests. Conclusion: Both the operator-conducted NIRI system and examiner radiographic assessment demonstrated superior detection capabilities compared to the AI program. Among these methods, the examiner radiographic assessment yielded the best results, followed by the NIRI system, demonstrating its potential for clinical use.

1.
Spatafora
G
,
Li
Y
,
He
X
,
Cowan
A
,
Tanner
ACR
.
The evolving microbiome of dental caries
:
Multidisciplinary Digital Publishing Institute (MDPI)
;
2024
.
2.
Featherstone
JDB
.
Dental caries: a dynamic disease process
.
Australian Dent J
.
2008
;
53
(3):
286
91
.
3.
Gomez
J
,
Tellez
M
,
Pretty
IA
,
Ellwood
RP
,
Ismail
AI
.
Non-cavitated carious lesions detection methods: a systematic review
.
Community Dent Oral Epidemiol
.
2013
;
41
(
1
):
54
66
.
4.
Gugnani
N
,
Pandit
IK
,
Srivastava
N
,
Gupta
M
,
Sharma
M
.
International caries detection and assessment system (ICDAS): a new concept
.
Int J Clin Pediatr Dent
.
2011
;
4
(
2
):
93
100
.
5.
Cury
JA
,
Tenuta
LM
.
Enamel remineralization: controlling the caries disease or treating early caries lesions
.
Cariology
.
2009
.
6.
Mejàre
I
,
Källestål
C
,
Stenlund
H
,
Johansson
H
.
Caries development from 11 to 22 years of age: a prospective radiographic study. Prevalence and distribution
.
Caries Res
.
1998
;
32
(
1
):
10
6
.
7.
Al Saffan
AD
.
Current approaches to diagnosis of early proximal carious lesion: a literature review
.
Cureus
.
2023
;
15
(
8
):
e43489
.
8.
Campos
SAG
,
Vieira
MLO
,
De Sousa
FB
.
Correlation between ICDAS and histology: differences between stereomicroscopy and microradiography with contrast solution as histological techniques
.
PLoS One
.
2017
;
12
(
8
):
e0183432
.
9.
Comm dent oral epid: 2007 – ismail: the international caries detection and assessment system ICDAS an integrated
.
10.
Kocak
N
,
Cengiz-Yanardag
E
.
Clinical performance of clinical-visual examination, digital bitewing radiography, laser fluorescence, and near-infrared light transillumination for detection of non-cavitated proximal enamel and dentin caries
.
11.
Mitropoulos
P
,
Rahiotis
C
,
Stamatakis
H
,
Kakaboura
A
.
Diagnostic performance of the visual caries classification system ICDAS II versus radiography and micro-computed tomography for proximal caries detection: an in vitro study
.
J Dent
.
2010
;
38
(
11
):
859
67
.
12.
Sakulratchata
R
.
Progression of proximal caries in primary molars using the radiographic ICDAS: a retrospective cohort study
.
European Arch Paediat Dent
.
2024
.
13.
Abogazalah
N
,
Ando
M
.
Alternative methods to visual and radiographic examinations for approximal caries detection
.
School of Dentistry
:
Nihon University
;
2017
.
14.
Abogazalah
N
,
Eckert
GJ
,
Ando
M
.
In vitro performance of near infrared light transillumination at 780-nm and digital radiography for detection of non-cavitated approximal caries
.
J Dent
.
2017
;
63
:
44
50
.
15.
Gomez
J
.
Detection and diagnosis of the early caries lesion
.
BMC Oral Health
.
2015
;
15
(
Suppl 1
):
S3
.
16.
Pretty
IA
,
Ekstrand
KR
.
Detection and monitoring of early caries lesions: a review
.
Eur Arch Paediatr Dent
.
2016
;
17
(
1
):
13
25
.
17.
Schwendicke
F
,
Tzschoppe
M
,
Paris
S
.
Radiographic caries detection: a systematic review and meta-analysis
:
Elsevier Ltd.
;
2015
.
18.
Lee
JH
,
Kim
DH
,
Jeong
SN
,
Choi
SH
.
Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm
.
J Dent
.
2018
;
77
:
106
11
.
19.
García-Cañas
Á
,
Bonfanti-Gris
M
,
Paraíso-Medina
S
,
Martínez-Rus
F
,
Pradíes
G
.
Diagnosis of interproximal caries lesions in bitewing radiographs using a deep convolutional neural network-based software
.
Caries Res
.
2022
;
56
(
5–6
):
503
11
.
20.
Chen
X
,
Guo
J
,
Ye
J
,
Zhang
M
,
Liang
Y
.
Detection of proximal caries lesions on bitewing radiographs using deep learning method
.
Caries Res
.
2022
;
56
(
5–6
):
455
63
.
21.
Bonfanti-Gris
M
,
Garcia-Cañas
A
,
Alonso-Calvo
R
,
Salido Rodriguez-Manzaneque
MP
,
Pradies Ramiro
G
.
Evaluation of an Artificial Intelligence web-based software to detect and classify dental structures and treatments in panoramic radiographs
.
J Dent
.
2022
;
126
(
Nov
):
104301
.
22.
Pitchika
V
,
Büttner
M
,
Schwendicke
F
.
Artificial intelligence and personalized diagnostics in periodontology: a narrative review
:
John Wiley and Sons Inc
;
2024
.
23.
Carrillo-Perez
F
.
Applications of artificial intelligence in dentistry: a comprehensive review
:
John Wiley and Sons Inc
;
2022
.
24.
Anil
S
,
Porwal
P
,
Porwal
A
.
Transforming dental caries diagnosis through artificial intelligence-based techniques
.
Cureus
.
2023
;
15
(
7
):
e41694
.
25.
Bonfanti-Gris
M
,
Herrera
A
,
Paraíso-Medina
S
,
Alonso-Calvo
R
,
Martínez-Rus
F
,
Pradíes
G
.
Performance evaluation of three versions of a convolutional neural network for object detection and segmentation using a multiclass and reduced panoramic radiograph dataset
.
J Dent
.
2024
;
144
:
104891
.
26.
Schwendicke
F
,
Cejudo Grano de Oro
J
,
Garcia Cantu
A
,
Meyer-Lueckel
H
,
Chaurasia
A
,
Krois
J
.
Artificial intelligence for caries detection: value of data and information
.
J Dent Res
.
2022
;
101
(
11
):
1350
6
.
27.
Manual de usuario de iTero Element 5D
.
2019
. [Online]. Available from: www.aligntech.com
28.
Stratigaki
E
,
Jost
FN
,
Kühnisch
J
,
Litzenburger
F
,
Lussi
A
,
Neuhaus
KW
.
Clinical validation of near-infrared light transillumination for early proximal caries detection using a composite reference standard
.
J Dent
.
2020
;
103S
:
100025
.
29.
Schlenz
MA
,
Schupp
B
,
Schmidt
A
,
Wöstmann
B
,
Baresel
I
,
Krämer
N
, et al
.
New caries diagnostic tools in intraoral scanners: a comparative in vitro study to established methods in permanent and primary teeth
.
Sensors
.
2022
;
22
(
6
):
2156
.
30.
Metzger
Z
,
Colson
DG
,
Bown
P
,
Weihard
T
,
Baresel
I
,
Nolting
T
.
Reflected near-infrared light versus bite-wing radiography for the detection of proximal caries: a multicenter prospective clinical study conducted in private practices
.
J Dent
.
2022
;
116
(
Jan
):
103861
.
31.
Michou
S
,
Vannahme
C
,
Bakhshandeh
A
,
Ekstrand
KR
,
Benetti
AR
.
Intraoral scanner featuring transillumination for proximal caries detection. An in vitro validation study on permanent posterior teeth
.
J Dent
.
2022
;
116
(
Jan
):
103841
.
32.
Sobral
APT
,
Gonçalves
MLL
,
D Annibale
AS
,
Santos
EM
,
Guedes
CC
,
Gallo
JMAS
, et al
.
Evaluation of different methods for the diagnosis of primary caries lesions: study protocol for a randomized controlled clinical trial
.
PLoS One
.
2022
;
17
(
8
):
e0273104
.
33.
Cao
J
,
Fang
Y
,
Liao
Y
,
Wang
Y
,
Yang
R
,
Zhang
Y
, et al
.
Clinical validation of near-infrared imaging for early detection of proximal caries in primary molars
.
J Dent
.
2023
;
138
(
Nov
):
104658
.
34.
Kühnisch
J
,
Janjic Rankovic
M
,
Kapor
S
,
Schüler
I
,
Krause
F
,
Michou
S
, et al
.
Identifying and avoiding risk of bias in caries diagnostic studies
.
J Clin Med
.
2021
;
10
(
15
):
3223
.
35.
Heck
K
,
Kunzelmann
KH
,
Walter
E
,
Kaisarly
D
,
Hoffmann
L
,
Litzenburger
F
.
Proximal caries detection using short-wave infrared transillumination at wavelengths of 1050, 1200 and 1300 nm in permanent posterior human teeth
.
Diagnostics
.
2023
;
13
(
20
):
3257
.
36.
Stenhagen
KR
,
Hove
LH
,
Holme
B
,
Taxt-Lamolle
S
,
Tveit
AB
.
Comparing different methods to assess erosive lesion depths and progression in vitro
.
Caries Res
.
2010
;
44
(
6
):
555
61
.
37.
Alkurt
MT
,
Peker
I
,
Bala
O
,
Altunkaynak
B
.
In vitro comparison of four different dental x-ray films and direct digital radiography for proximal caries detection
.
Oper Dent
.
2007
;
32
(
5
):
504
9
.
38.
Neuhaus
KW
,
Eggmann
F
,
Kühnisch
J
,
Kapor
S
,
Janjic Rankovic
M
,
Schüler
I
, et al
.
STAndard reporting of CAries detection and diagnostic studies (STARCARDDS)
.
Clin Oral Investig
.
2022
;
26
(
2
):
1947
55
.
39.
Tuzoff
DV
,
Tuzova
LN
,
Bornstein
MM
,
Krasnov
AS
,
Kharchenko
MA
,
Nikolenko
SI
, et al
.
Tooth detection and numbering in panoramic radiographs using convolutional neural networks
.
Dentomaxillofac Radiol
.
2019
;
48
(
4
):
20180051
.
40.
Kim
S
,
Lee
W
.
Does McNemar’s test compare the sensitivities and specificities of two diagnostic tests
.
Stat Methods Med Res
.
2017
;
26
(
1
):
142
54
.
41.
Valachovic
RW
,
Douglass
CW
,
Berkey
CS
,
McNeil
BJ
,
Chauncey
HH
.
Examiner reliability in dental radiography
.
J Dent Res
.
1986
;
65
(
3
):
432
6
.
42.
ForouzeshFar
P
,
Safaei
AA
,
Ghaderi
F
,
Hashemikamangar
SS
.
Dental Caries diagnosis from bitewing images using convolutional neural networks
.
BMC Oral Health
.
2024
;
24
(
1
):
211
.
43.
Mertens
S
,
Krois
J
,
Cantu
AG
,
Arsiwala
LT
,
Schwendicke
F
.
Artificial intelligence for caries detection: Randomized trial
.
J Dent
.
2021
;
115
:
103849
.
44.
Bayraktar
Y
,
Ayan
E
.
Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs
.
Clin Oral Investig
.
2022
;
26
(
1
):
623
32
.
45.
Mohammad-Rahimi
H
,
Motamedian
SR
,
Rohban
MH
,
Krois
J
,
Uribe
SE
,
Mahmoudinia
E
, et al
.
Deep learning for caries detection: A systematic review
.
J Dent
.
2022
;
122
:
104115
.
46.
Schwendicke
F
,
Rossi
JG
,
Göstemeyer
G
,
Elhennawy
K
,
Cantu
AG
,
Gaudin
R
, et al
.
Cost-effectiveness of artificial intelligence for proximal caries detection
.
J Dent Res
.
2021
;
100
(
4
):
369
76
.
47.
Lederer
A
,
Kunzelmann
KH
,
Heck
K
,
Hickel
R
,
Litzenburger
F
.
In vitro validation of near-infrared transillumination at 780 nm for the detection of caries on proximal surfaces
.
Clin Oral Investig
.
2019
;
23
(
11
):
3933
40
.
48.
Vanella
V
,
Castagnola
R
,
Marigo
L
,
Grande
NM
,
Plotino
G
.
A comparison of near-infrared imaging with other diagnostic tools for dental caries
.
Minerva Dent Oral Sci
.
2021
;
70
(
5
):
214
22
.
49.
Lin
WS
,
Alfaraj
A
,
Lippert
F
,
Yang
CC
.
Performance of the caries diagnosis feature of intraoral scanners and near-infrared imaging technology: a narrative review
:
John Wiley and Sons Inc
;
2023
.
50.
Kühnisch
J
,
Söchtig
F
,
Pitchika
V
,
Laubender
R
,
Neuhaus
KW
,
Lussi
A
, et al
.
In vivo validation of near-infrared light transillumination for interproximal dentin caries detection
.
Clin Oral Investig
.
2016
;
20
(
4
):
821
9
.
51.
Ortiz
MIG
,
de Melo Alencar
C
,
De Paula
BLF
,
Magno
MB
,
Maia
LC
,
Silva
CM
.
Accuracy of near-infrared light transillumination (NILT) compared to bitewing radiograph for detection of interproximal caries in the permanent dentition: a systematic review and meta-analysis
:
Elsevier Ltd.
;
2020
.
You do not currently have access to this content.