Introduction: Dental caries is a noncommunicable disease caused by dysbiosis of a dental biofilm. Streptococcus mutans is considered the major pathogen. The orphan response regulator GcrR negatively regulates exopolysaccharide (EPS) synthesis in S. mutans. We aimed to investigate the effect of GcrR on the cariogenicity of oral biofilms. A triple-species biofilm model was constructed, including S. mutans, Streptococcus sanguinis, and Streptococcus gordonii. Methods: The morphology of triple-species biofilms was detected through scanning electron microscopy, and the structure was observed using confocal laser scanning microscopy. The microbial composition was measured by fluorescence in situ hybridization and qPCR. The expression of genes was detected by quantitative reverse transcription-PCR. A specific pathogen-free rat model was used to assess the cariogenicity of the triple-species biofilms. Results: The architecture of the biofilm was significantly impaired when gcrR-overexpressed S. mutans were incubated with S. sanguinis and S. gordonii (SmugcrR++S.s+S.g). The biofilm exhibited a decrease in the production of water-insoluble glucans and water-soluble glucans, consistent with a decreased expression of EPS synthesis-related genes. The SmugcrR++S.s+S.g biofilm exhibited an increase in non-cariogenic species with lower lactic acid production. Furthermore, the SmugcrR++S.s+S.g biofilm exhibited reduced cariogenicity. Conclusion: The biofilm cariogenicity could be shifted to a less cariogenic state by an increased expression of the GcrR regulator.

1.
Kreth
J
,
Merritt
J
,
Shi
W
,
Qi
F
.
Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm
.
J Bacteriol
.
2005
;
187
(
21
):
7193
203
.
2.
Abranches
J
,
Zeng
L
,
Kajfasz
JK
,
Palmer
SR
,
Chakraborty
B
,
Wen
ZT
, et al
.
Biology of oral streptococci
.
Microbiol Spectr
.
2018
;
6
(
5
):
1
18
.
3.
Cheng
L
,
Weir
MD
,
Xu
HH
,
Kraigsley
AM
,
Lin
NJ
,
Lin-Gibson
S
, et al
.
Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine
.
Dent Mater
.
2012
;
28
(
5
):
573
83
.
4.
Liu
D
,
Ma
X
,
Ji
Y
,
Chen
R
,
Zhou
S
,
Yao
H
, et al
.
Bioresponsive nanotherapy for preventing dental caries by inhibiting multispecies cariogenic biofilms
.
Bioact Mater
.
2022
;
14
:
1
14
.
5.
Lemos
JA
,
Burne
RA
.
A model of efficiency: stress tolerance by Streptococcus mutans
.
Microbiol Read
.
2008
;
154
(
Pt 11
):
3247
55
.
6.
Lyu
X
,
Wang
L
,
Shui
Y
,
Jiang
Q
,
Chen
L
,
Yang
W
, et al
.
Ursolic acid inhibits multi-species biofilms developed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii
.
Arch Oral Biol
.
2021
;
125
:
105107
116
.
7.
Becker
MR
,
Paster
BJ
,
Leys
EJ
,
Moeschberger
ML
,
Kenyon
SG
,
Galvin
JL
, et al
.
Molecular analysis of bacterial species associated with childhood caries
.
J Clin Microbiol
.
2002
;
40
(
3
):
1001
9
.
8.
Ge
Y
,
Caufield
PW
,
Fisch
GS
,
Li
Y
.
Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children
.
Caries Res
.
2008
;
42
(
6
):
444
8
.
9.
Lei
L
,
Long
L
,
Yang
X
,
Qiu
Y
,
Zeng
Y
,
Hu
T
, et al
.
The VicRK two-component system regulates Streptococcus mutans virulence
.
Curr Issues Mol Biol
.
2019
;
32
(
1
):
167
200
.
10.
Churchward
G
.
The two faces of Janus: virulence gene regulation by CovR/S in group A streptococci
.
Mol Microbiol
.
2007
;
64
(
1
):
34
41
.
11.
Downey
JS
,
Mashburn-Warren
L
,
Ayala
EA
,
Senadheera
DB
,
Hendrickson
WK
,
McCall
LW
, et al
.
In vitro manganese-dependent cross-talk between Streptococcus mutans VicK and GcrR: implications for overlapping stress response pathways
.
PLoS One
.
2014
;
9
(
12
):
e115975
.
12.
Federle
MJ
,
McIver
KS
,
Scott
JR
.
A response regulator that represses transcription of several virulence operons in the group A streptococcus
.
J Bacteriol
.
1999
;
181
(
12
):
3649
57
.
13.
Gusa
AA
,
Scott
JR
.
The CovR response regulator of group A streptococcus (GAS) acts directly to repress its own promoter
.
Mol Microbiol
.
2005
;
56
(
5
):
1195
207
.
14.
Araújo Alves
L
,
Ganguly
T
,
Mattos-Graner
RO
,
Kajfasz
J
,
Harth-Chu
EN
,
Lemos
JA
, et al
.
CovR and VicRKX regulate transcription of the collagen binding protein Cnm of Streptococcus mutans
.
J Bacteriol
.
2018
;
200
(
23
):
e00141-18
.
15.
Dmitriev
A
,
Mohapatra
SS
,
Chong
P
,
Neely
M
,
Biswas
S
,
Biswas
I
.
CovR-controlled global regulation of gene expression in Streptococcus mutans
.
PLoS One
.
2011
;
6
(
5
):
e20127
.
16.
Bowen
WH
,
Koo
H
.
Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms
.
Caries Res
.
2011
;
45
(
1
):
69
86
.
17.
Cross
SE
,
Kreth
J
,
Zhu
L
,
Sullivan
R
,
Shi
W
,
Qi
F
, et al
.
Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions
.
Microbiol Read
.
2007
;
153
(
Pt 9
):
3124
32
.
18.
Zu
Y
,
Li
W
,
Wang
Q
,
Chen
J
,
Guo
Q
.
ComDE two-component signal transduction systems in oral streptococci: structure and function
.
Curr Issues Mol Biol
.
2019
;
32
:
201
58
.
19.
Pan
W
,
Mao
T
,
Xu
QA
,
Shao
J
,
Liu
C
,
Fan
M
.
A new gcrR-deficient Streptococcus mutans mutant for replacement therapy of dental caries
.
Sci World J
.
2013
;
2013
:
460202
8
.
20.
Sun
JH
,
Xu
QA
,
Fan
MW
.
A new strategy for the replacement therapy of dental caries
.
Med Hypotheses
.
2009
;
73
(
6
):
1063
4
.
21.
Zhang
H
,
Xia
M
,
Zhang
B
,
Zhang
Y
,
Chen
H
,
Deng
Y
, et al
.
Sucrose selectively regulates Streptococcus mutans polysaccharide by GcrR
.
Environ Microbiol
.
2022
;
24
(
3
):
1395
410
.
22.
Negrini
TC
,
Duque
C
,
Vizoto
NL
,
Stipp
RN
,
Mariano
FS
,
Höfling
JF
, et al
.
Influence of VicRK and CovR on the interactions of Streptococcus mutans with phagocytes
.
Oral Dis
.
2012
;
18
(
5
):
485
93
.
23.
Perry
D
,
Kuramitsu
HK
.
Genetic transformation of Streptococcus mutans
.
Infect Immun
.
1981
;
32
(
3
):
1295
7
.
24.
Sun
Y
,
Chen
Y
,
Du
Q
,
Zhang
J
,
Xu
M
,
Zheng
G
, et al
.
Fluoride-resistant Streptococcus mutans within cross-kingdom biofilms support Candida albicans growth under fluoride and attenuate the in vitro anti-caries effect of fluorine
.
Front Microbiol
.
2024
;
15
:
1399525
.
25.
Yu
S
,
Xu
M
,
Wang
Z
,
Deng
Y
,
Xu
HHK
,
Weir
MD
, et al
.
S. mutans antisense vicK RNA over-expression plus antibacterial dimethylaminohexadecyl methacrylate suppresses oral biofilms and protects enamel hardness in extracted human teeth
.
Pathogens
.
2024
;
13
(
8
):
707
14
.
26.
Jiang
W
,
Wang
Y
,
Luo
J
,
Li
X
,
Zhou
X
,
Li
W
, et al
.
Effects of antimicrobial peptide GH12 on the cariogenic properties and composition of a cariogenic multispecies biofilm
.
Appl Environ Microbiol
.
2018
;
84
(
24
):
e01423-18
.
27.
Lei
L
,
Yang
Y
,
Mao
M
,
Li
H
,
Li
M
,
Yang
Y
, et al
.
Modulation of biofilm exopolysaccharides by the Streptococcus mutans vicX gene
.
Front Microbiol
.
2015
;
6
:
1432
45
.
28.
Yoshida
A
,
Suzuki
N
,
Nakano
Y
,
Kawada
M
,
Oho
T
,
Koga
T
.
Development of a 5’ nuclease-based real-time PCR assay for quantitative detection of cariogenic dental pathogens Streptococcus mutans and Streptococcus sobrinus
.
J Clin Microbiol
.
2003
;
41
(
9
):
4438
41
.
29.
Zhang
J
,
Kuang
X
,
Zhou
Y
,
Yang
R
,
Zhou
X
,
Peng
X
, et al
.
Antimicrobial activities of a small molecule compound II-6s against oral streptococci
.
J Oral Microbiol
.
2021
;
13
(
1
):
1909917
28
.
30.
Chen
H
,
Xu
M
,
Zhang
B
,
Yu
S
,
Weir
MD
,
Melo
MAS
, et al
.
Novel strategy of S. mutans gcrR gene over-expression plus antibacterial dimethylaminohexadecyl methacrylate suppresses biofilm acids and reduces dental caries in rats
.
Dent Mater
.
2024
;
40
(
10
):
e41
51
.
31.
Keyes
PH
.
Dental caries in the molar teeth of rats. II. A method for diagnosing and scoring several types of lesions simultaneously
.
J Dent Res
.
1958
;
37
(
6
):
1088
99
.
32.
Simón-Soro
A
,
Mira
A
.
Solving the etiology of dental caries
.
Trends Microbiol
.
2015
;
23
(
2
):
76
82
.
33.
Nyvad
B
,
Takahashi
N
.
Integrated hypothesis of dental caries and periodontal diseases
.
J Oral Microbiol
.
2020
;
12
(
1
):
1710953
64
.
34.
Marsh
PD
.
Microbiology of dental plaque biofilms and their role in oral health and caries
.
Dent Clin North Am
.
2010
;
54
(
3
):
441
54
.
35.
Spatafora
G
,
Li
Y
,
He
X
,
Cowan
A
,
Tanner
ACR
.
The evolving microbiome of dental caries
.
Microorganisms
.
2024
;
12
(
1
):
121
65
.
36.
Nascimento
MM
,
Browngardt
C
,
Xiaohui
X
,
Klepac-Ceraj
V
,
Paster
BJ
,
Burne
RA
.
The effect of arginine on oral biofilm communities
.
Mol Oral Microbiol
.
2014
;
29
(
1
):
45
54
.
37.
Zhang
K
,
Wang
S
,
Zhou
X
,
Xu
HH
,
Weir
MD
,
Ge
Y
, et al
.
Effect of antibacterial dental adhesive on multispecies biofilms formation
.
J Dent Res
.
2015
;
94
(
4
):
622
9
.
38.
Kreth
J
,
Zhang
Y
,
Herzberg
MC
.
Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans
.
J Bacteriol
.
2008
;
190
(
13
):
4632
40
.
39.
Chen
H
,
Yang
Y
,
Weir
MD
,
Dai
Q
,
Lei
L
,
Homayounfar
N
, et al
.
Regulating oral biofilm from cariogenic state to non-cariogenic state via novel combination of bioactive therapeutic composite and gene-knockout
.
Microorganisms
.
2020
;
8
(
9
):
1410
25
.
40.
Cui
G
,
Li
P
,
Wu
R
,
Lin
H
.
Streptococcus mutans membrane vesicles inhibit the biofilm formation of Streptococcus gordonii and Streptococcus sanguinis
.
AMB Express
.
2022
;
12
(
1
):
154
64
.
41.
Palmer
SR
,
Ren
Z
,
Hwang
G
,
Liu
Y
,
Combs
A
,
Söderström
B
, et al
.
Streptococcus mutans yidC1 and yidC2 impact cell envelope biogenesis, the biofilm matrix, and biofilm biophysical properties
.
J Bacteriol
.
2019
;
201
(
1
):
e00396-18
.
42.
Yan
Y
,
Hailun
H
,
Fenghui
Y
,
Pingting
L
,
Lei
L
,
Zhili
Z
, et al
.
Streptococcus mutans dexA affects exopolysaccharides production and biofilm homeostasis
.
Mol Oral Microbiol
.
2023
;
38
(
2
):
134
44
.
43.
Maehara
H
,
Iwami
Y
,
Mayanagi
H
,
Takahashi
N
.
Synergistic inhibition by combination of fluoride and xylitol on glycolysis by mutans streptococci and its biochemical mechanism
.
Caries Res
.
2005
;
39
(
6
):
521
8
.
44.
Hasan
S
,
Singh
K
,
Danisuddin
M
,
Verma
PK
,
Khan
AU
.
Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: a synergistic approach of infection control
.
PLoS One
.
2014
;
9
(
3
):
e91736
.
45.
Zeng
L
,
Walker
AR
,
Burne
RA
,
Taylor
ZA
.
Glucose phosphotransferase system modulates pyruvate metabolism, bacterial fitness, and microbial ecology in oral streptococci
.
J Bacteriol
.
2023
;
205
(
1
):
e0035222
22
.
46.
Stipp
RN
,
Boisvert
H
,
Smith
DJ
,
Höfling
JF
,
Duncan
MJ
,
Mattos-Graner
RO
.
CovR and VicRK regulate cell surface biogenesis genes required for biofilm formation in Streptococcus mutans
.
PLoS One
.
2013
;
8
(
3
):
e58271
.
47.
Chong
P
,
Drake
L
,
Biswas
I
.
Modulation of covR expression in Streptococcus mutans UA159
.
J Bacteriol
.
2008
;
190
(
13
):
4478
88
.
48.
Zheng
LY
,
Itzek
A
,
Chen
ZY
,
Kreth
J
.
Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis
.
Int J Oral Sci
.
2011
;
3
(
2
):
82
9
.
49.
Moraes
JJ
,
Stipp
RN
,
Harth-Chu
EN
,
Camargo
TM
,
Höfling
JF
,
Mattos-Graner
RO
.
Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms
.
Infect Immun
.
2014
;
82
(
12
):
4941
51
.
50.
Zeng
L
,
Walker
AR
,
Burne
RA
,
Taylor
ZA
.
Glucose phosphotransferase system modulates pyruvate metabolism, bacterial fitness, and microbial ecology in oral streptococci
.
J Bacteriol
.
2023
;
205
(
1
):
e0035222
40
.
51.
Ajdić
D
,
McShan
WM
,
McLaughlin
RE
,
Savić
G
,
Chang
J
,
Carson
MB
, et al
.
Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
22
):
14434
9
.
52.
Lei
L
,
Zhang
B
,
Mao
M
,
Chen
H
,
Wu
S
,
Deng
Y
, et al
.
Carbohydrate metabolism regulated by antisense vicR RNA in cariogenicity
.
J Dent Res
.
2020
;
99
(
2
):
204
13
.
53.
Duque
C
,
Stipp
RN
,
Wang
B
,
Smith
DJ
,
Höfling
JF
,
Kuramitsu
HK
, et al
.
Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans
.
Infect Immun
.
2011
;
79
(
2
):
786
96
.
54.
Mieher
JL
,
Larson
MR
,
Schormann
N
,
Purushotham
S
,
Wu
R
,
Rajashankar
KR
, et al
.
Glucan binding protein C of Streptococcus mutans mediates both sucrose-independent and sucrose-dependent adherence
.
Infect Immun
.
2018
;
86
(
7
):
e00146-18
.
55.
Khalikova
E
,
Susi
P
,
Usanov
N
,
Korpela
T
.
Purification and properties of extracellular dextranase from a Bacillus sp
.
J Chromatogr B Analyt Technol Biomed Life Sci
.
2003
;
796
(
2
):
315
26
.
56.
Yang
Y
,
Mao
M
,
Lei
L
,
Li
M
,
Yin
J
,
Ma
X
, et al
.
Regulation of water-soluble glucan synthesis by the Streptococcus mutans dexA gene effects biofilm aggregation and cariogenic pathogenicity
.
Mol Oral Microbiol
.
2019
;
34
(
2
):
51
63
.
57.
Garvie
EI
.
Bacterial lactate dehydrogenases
.
Microbiol Rev
.
1980
;
44
(
1
):
106
39
.
58.
Van den Bossche
S
,
Vandeplassche
E
,
Ostyn
L
,
Coenye
T
,
Crabbé
A
.
Bacterial interference with lactate dehydrogenase assay leads to an underestimation of cytotoxicity
.
Front Cel Infect Microbiol
.
2020
;
10
:
494
504
.
59.
Li
YH
,
Tang
N
,
Aspiras
MB
,
Lau
PC
,
Lee
JH
,
Ellen
RP
, et al
.
A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation
.
J Bacteriol
.
2002
;
184
(
10
):
2699
708
.
60.
Senadheera
D
,
Cvitkovitch
DG
.
Quorum sensing and biofilm formation by Streptococcus mutans
.
Adv Exp Med Biol
.
2008
;
631
:
178
88
.
61.
Cai
JN
,
Kim
D
.
Biofilm ecology associated with dental caries: understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms
.
Adv Appl Microbiol
.
2023
;
122
:
27
75
.
62.
Deng
Y
,
Yang
Y
,
Zhang
B
,
Chen
H
,
Lu
Y
,
Ren
S
, et al
.
The vicK gene of Streptococcus mutans mediates its cariogenicity via exopolysaccharides metabolism
.
Int J Oral Sci
.
2021
;
13
(
1
):
45
56
.
63.
Huang
X
,
Zhang
K
,
Deng
M
,
Exterkate
RAM
,
Liu
C
,
Zhou
X
, et al
.
Effect of arginine on the growth and biofilm formation of oral bacteria
.
Arch Oral Biol
.
2017
;
82
:
256
62
.
64.
Kardas
P
,
Astasov-Frauenhoffer
M
,
Braissant
O
,
Bornstein
MM
,
Waltimo
T
.
Bacterial extracellular polymeric substances as potential saliva substitute
.
FEMS Microbiol Lett
.
2022
;
369
(
1
):
fnac028
.
You do not currently have access to this content.