Introduction:Streptococcus mutans adherence to the tooth surface and subsequent biofilm development is modulated by the carbohydrate source, but the corresponding effect on bacterial proteome has not been previously studied. This study aimed to assess the effect of different carbohydrates on S. mutans viability and bacterial proteome at 2 time points, early attachment (8 h) and biofilm maturation (24 h). Methods: Hydroxyapatite (HAp) discs coated with parotid saliva proteins were inoculated with S. mutans UA159 in tryptone soy broth without dextrose supplemented with one of the following carbohydrates (n = 12/treatment/time point): 1% sucrose; 0.525% glucose + 0.525% fructose; 10% xylitol; 10% xylitol + 1% sucrose; or culture medium without supplementation as negative control. Once inoculated, HAp discs were incubated for 8 h or 24 h at 37°C and 10% CO2. After each incubation period, adhered bacteria were quantified using the plate-counting method for 6 HAp discs/group, and the remaining 6 HAp discs/group were used to extract bacterial cell wall proteins. Extracted proteins were analyzed using liquid chromatography coupled with mass spectrometry and then classified by their biological process. The study was conducted in three independent assays, and the number of bacteria adhered to the HAp discs was determined at each time point and analyzed by two-way ANOVA followed by Bonferroni test (α = 5%). Results: The results suggest that xylitol significantly repressed bacterial adherence and metabolism at 8 h and 24 h; however, bacterial adherence and metabolism were significantly enhanced when xylitol was combined with sucrose, showing no negative effect on S. mutans at both time points. Bacterial proteome was modulated by the carbohydrate source. Conclusion: The cariogenicity of S. mutans biofilms may be reduced by the alternative sweetener xylitol; however, the combination with fermentable sugars may inhibit such a beneficial effect.

1.
Bowen
WH
,
Eastoe
JE
,
Cock
DJ
.
The effect of sugar solutions on the pH of plaque in caries-active monkeys (macaca irus)
.
Arch Oral Biol
.
1966
;
11
(
8
):
833
8
.
2.
Marsh
PD
.
Dental plaque: biological significance of a biofilm and community life-style
.
J Clin Periodontol
.
2005
;
32
(
Suppl 6
):
7
15
.
3.
Fejerskov
O
.
Changing paradigms in concepts on dental caries: consequences for oral health care
.
Caries Res
.
2004
;
38
(
3
):
182
91
.
4.
Newbrun
E
.
Sucrose, the arch criminal of dental caries
.
Odontol Revy
.
1967
;
18
(
4
):
373
86
.
5.
Vacca-Smith
AM
,
Venkitaraman
AR
,
Quivey
RG
Jr
,
Bowen
WH
.
Interactions of streptococcal glucosyltransferases with alpha-amylase and starch on the surface of saliva-coated hydroxyapatite
.
Arch Oral Biol
.
1996
;
41
(
3
):
291
8
.
6.
Hamada
S
,
Koga
T
,
Ooshima
T
.
Virulence factors of Streptococcus mutans and dental caries prevention
.
J Dent Res
.
1984
;
63
(
3
):
407
11
.
7.
Quivey
RG
Jr
,
Kuhnert
WL
,
Hahn
K
.
Adaptation of oral streptococci to low pH
.
Adv Microb Physiol
.
2000
;
42
:
239
74
.
8.
Bowen
WH
.
Do we need to be concerned about dental caries in the coming millennium
.
Crit Rev Oral Biol Med
.
2002
;
13
(
2
):
126
31
.
9.
Kuramitsu
HK
.
Characterization of invertase activity from cariogenic Streptococcus mutans
.
J Bacteriol
.
1973
;
115
(
3
):
1003
10
.
10.
Van Loveren
C
.
Sugar alcohols: what is the evidence for caries-preventive and caries-therapeutic effects
.
Caries Res
.
2004
;
38
(
3
):
286
93
.
11.
Assev
S
,
Rölla
G
.
Evidence for presence of a xylitol phosphotransferase system in Streptococcus mutans OMZ 176
.
Acta Pathol Microbiol Immunol Scand B
.
1984
;
92
(
2
):
89
92
.
12.
Trahan
L
,
Bareil
M
,
Gauthier
L
,
Vadeboncoeur
C
.
Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans
.
Caries Res
.
1985
;
19
(
1
):
53
63
.
13.
Trahan
L
.
Xylitol: a review of its action on mutans streptococci and dental plaque: its clinical significance
.
Int Dent J
.
1995
;
45
(
1 Suppl 1
):
77
92
.
14.
Miyasawa
H
,
Iwami
Y
,
Mayanagi
H
,
Takahashi
N
.
Xylitol inhibition of anaerobic acid production by Streptococcus mutans at various pH levels
.
Oral Microbiol Immunol
.
2003
;
18
(
4
):
215
9
.
15.
Vadeboncoeur
C
,
Trahan
L
,
Mouton
C
,
Mayrand
D
.
Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria
.
J Dent Res
.
1983
;
62
(
8
):
882
4
.
16.
Söderling
E
,
Alaräisänen
L
,
Scheinin
A
,
Mäkinen
KK
.
Effect of xylitol and sorbitol on polysaccharide production by and adhesive properties of Streptococcus mutans
.
Caries Res
.
1987
;
21
(
2
):
109
16
.
17.
American Academy of Pediatric Dentistry
.
Guideline on caries-risk assessment and management for infants, children, and adolescents
.
Pediatr Dent
.
2013
;
35
(
5
):
E157
64
.
18.
Milgrom
P
,
Ly
KA
,
Tut
OK
,
Mancl
L
,
Roberts
MC
,
Briand
K
, et al
.
Xylitol pediatric topical oral syrup to prevent dental caries: a double-blind randomized clinical trial of efficacy
.
Arch Pediatr Adolesc Med
.
2009
;
163
(
7
):
601
7
.
19.
Sintes
JL
,
Escalante
C
,
Stewart
B
,
McCool
JJ
,
Garcia
L
,
Volpe
AR
, et al
.
Enhanced anticaries efficacy of a 0.243% sodium fluoride/10% xylitol/silica dentifrice: 3-year clinical results
.
Am J Dent
.
1995
;
8
(
5
):
231
5
.
20.
Sintes
JL
,
Elías-Boneta
A
,
Stewart
B
,
Volpe
AR
,
Lovett
J
.
Anticaries efficacy of a sodium monofluorophosphate dentifrice containing xylitol in a dicalcium phosphate dihydrate base. A 30-month caries clinical study in Costa Rica
.
Am J Dent
.
2002
;
15
(
4
):
215
9
.
21.
Lenkkeri
AM
,
Pienihäkkinen
K
,
Hurme
S
,
Alanen
P
.
The caries-preventive effect of xylitol/maltitol and erythritol/maltitol lozenges: results of a double-blinded, cluster-randomized clinical trial in an area of natural fluoridation
.
Int J Paediatr Dent
.
2012
;
22
(
3
):
180
90
.
22.
Bader
JD
,
Vollmer
WM
,
Shugars
DA
,
Gilbert
GH
,
Amaechi
BT
,
Brown
JP
, et al
.
Results from the xylitol for adult caries trial (X-ACT)
.
J Am Dent Assoc
.
2013
;
144
(
1
):
21
30
.
23.
Zhan
L
,
Cheng
J
,
Chang
P
,
Ngo
M
,
Denbesten
PK
,
Hoover
CI
, et al
.
Effects of xylitol wipes on cariogenic bacteria and caries in young children
.
J Dent Res
.
2012
;
91
(
7 Suppl l
):
85S
90S
.
24.
Antonio
AG
,
Pierro
VS
,
Maia
LC
.
Caries preventive effects of xylitol-based candies and lozenges: a systematic review
.
J Public Health Dent
.
2011
;
71
(
2
):
117
24
.
25.
Isokangas
P
,
Tenovuo
J
,
Söderling
E
,
Männistö
H
,
Mäkinen
KK
.
Dental caries and mutans streptococci in the proximal areas of molars affected by the habitual use of xylitol chewing gum
.
Caries Res
.
1991
;
25
(
6
):
444
8
.
26.
Isokangas
P
,
Söderling
E
,
Pienihäkkinen
K
,
Alanen
P
.
Occurrence of dental decay in children after maternal consumption of xylitol chewing gum, a follow-up from 0 to 5 years of age
.
J Dent Res
.
2000
;
79
(
11
):
1885
9
.
27.
Marghalani
AA
,
Guinto
E
,
Phan
M
,
Dhar
V
,
Tinanoff
N
.
Effectiveness of xylitol in reducing dental caries in children
.
Pediatr Dent
.
2017
;
39
(
2
):
103
10
.
28.
Assev
S
,
Stig
S
,
Scheie
AA
.
Cariogenic traits in xylitol-resistant and xylitol-sensitive mutans streptococci
.
Oral Microbiol Immunol
.
2002
;
17
(
2
):
95
9
.
29.
Takahashi
N
,
Washio
J
.
Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo
.
J Dent Res
.
2011
;
90
(
12
):
1463
8
.
30.
Decker
EM
,
Klein
C
,
Schwindt
D
,
von Ohle
C
.
Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose
.
Int J Oral Sci
.
2014
;
6
(
4
):
195
204
.
31.
Salli
KM
,
Forssten
SD
,
Lahtinen
SJ
,
Ouwehand
AC
.
Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator
.
Arch Oral Biol
.
2016
;
70
:
39
46
.
32.
Sato
Y
,
Yamamoto
Y
,
Kizaki
H
.
Xylitol-induced elevated expression of the gbpC gene in a population of Streptococcus mutans cells
.
Eur J Oral Sci
.
2000
;
108
(
6
):
538
45
.
33.
Shemesh
M
,
Tam
A
,
Feldman
M
,
Steinberg
D
.
Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases
.
Carbohydr Res
.
2006
;
341
(
12
):
2090
7
.
34.
Marin
LM
,
Cury
JA
,
Siqueira
WL
.
Validation of a cariogenic biofilm model by evaluating the effect of fluoride on enamel demineralization
.
J Microbiol Methods
.
2022
;
192
:
106386
.
35.
Fernández
CE
,
Tenuta
LM
,
Cury
JA
.
Validation of a cariogenic biofilm model to evaluate the effect of fluoride on enamel and root dentine demineralization
.
PLoS One
.
2016
;
11
(
1
):
e0146478
.
36.
Marin
LM
,
Xiao
Y
,
Cury
JA
,
Siqueira
WL
.
Modulation of Streptococcus mutans adherence to hydroxyapatite by engineered salivary peptides
.
Microorganisms
.
2022
;
10
(
2
):
223
.
37.
Trahan
L
,
Néron
S
,
Bareil
M
.
Intracellular xylitol-phosphate hydrolysis and efflux of xylitol in Streptococcus sobrinus
.
Oral Microbiol Immunol
.
1991
;
6
(
1
):
41
50
.
38.
Schilling
KM
,
Bowen
WH
.
Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans
.
Infect Immun
.
1992
;
60
(
1
):
284
95
.
39.
Vacca-Smith
AM
,
Bowen
WH
.
Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces
.
Arch Oral Biol
.
1998
;
43
(
2
):
103
10
.
40.
Koo
H
,
Xiao
J
,
Klein
MI
,
Jeon
JG
.
Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms
.
J Bacteriol
.
2010
;
192
(
12
):
3024
32
.
41.
Xiao
J
,
Koo
H
.
Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms
.
J Appl Microbiol
.
2010
;
108
(
6
):
2103
13
.
42.
Banas
JA
,
Vickerman
MM
.
Glucan-binding proteins of the oral streptococci
.
Crit Rev Oral Biol Med
.
2003
;
14
(
2
):
89
99
.
43.
Kopec
LK
,
Vacca-Smith
AM
,
Bowen
WH
.
Structural aspects of glucans formed in solution and on the surface of hydroxyapatite
.
Glycobiology
.
1997
;
7
(
7
):
929
34
.
44.
Li
YH
,
Hanna
MN
,
Svensäter
G
,
Ellen
RP
,
Cvitkovitch
DG
.
Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms
.
J Bacteriol
.
2001
;
183
(
23
):
6875
84
.
45.
Li
YH
,
Lau
PC
,
Lee
JH
,
Ellen
RP
,
Cvitkovitch
DG
.
Natural genetic transformation of Streptococcus mutans growing in biofilms
.
J Bacteriol
.
2001
;
183
(
3
):
897
908
.
46.
Leung
V
,
Levesque
CM
.
A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance
.
J Bacteriol
.
2012
;
194
(
9
):
2265
74
.
47.
Hajishengallis
G
,
Koga
T
,
Russell
MW
.
Affinity and specificity of the interactions between Streptococcus mutans antigen I/II and salivary components
.
J Dent Res
.
1994
;
73
(
9
):
1493
502
.
48.
Matsumoto-Nakano
M
.
Role of Streptococcus mutans surface proteins for biofilm formation
.
Jpn Dent Sci Rev
.
2018
:
22
9
.
49.
Lynch
DJ
,
Fountain
TL
,
Mazurkiewicz
JE
,
Banas
JA
.
Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture
.
FEMS Microbiol Lett
.
2007
;
268
(
2
):
158
65
.
50.
Zeng
L
,
Burne
RA
.
Sucrose- and fructose-specific effects on the transcriptome of Streptococcus mutans, as determined by RNA sequencing
.
Appl Environ Microbiol
.
2016
;
82
(
1
):
146
56
.
You do not currently have access to this content.