Introduction: Acquired pellicle (AP) acts as a membrane preventing acids from coming into direct contact with the tooth. Possibly, individuals with different dental health status present changes in its composition that could disrupt this function. Thus, the aim of this study was to compare the protein composition of the AP in adolescents with erosive tooth wear (ETW), caries, or sound. Methods: Calibrated examiners in BEWE index and ICDAS-merged Epi criteria assessed ETW and caries in a sample of 454 systemically healthy adolescents aged 12–15 years old. Thirty subjects from that sample were selected for this study: ETW group (n = 10; total BEWE ≥9 and absence of dentinal caries lesions); caries group (n = 10; total BEWE <9 and with at least one dentinal caries lesion), and sound group (n = 10; total BEWE <9 and absence of dentinal caries lesions). Two-hour-formation AP samples were taken from buccal, occlusal/incisal, palatal/lingual tooth surfaces. Protein composition was analysed by liquid chromatography-tandem mass spectrometry. Using mean reporter ion values, relative abundances of proteins were compared among the three groups to calculate for fold changes. Twofold protein increases or decreases were reported (t test, p < 0.05). Gene Ontology (GO) of included proteins was assigned. Results: Mean age of participants was 13.1 ± 1.14 years and 56.6% were females. The prevalence of ETW was of 66.6% and of dentinal caries of 33.3%. The GO analyses showed that the majority of detected proteins were stress response related. The ETW group disclosed upregulated relative abundance of antileukoprotease (2.85-fold in ETW vs. sound and 2.34-fold in ETW group vs. caries group); histatin (2.42-fold in ETW group vs. sound group and 2.20-fold in ETW group vs. caries group), and prolactin-induced protein (2.30-fold in ETW group vs. sound group and 2.06-fold in ETW group vs. caries group) (p < 0.05). Hemoglobin subunits alpha (HBA) and beta (HBB) showed decreased relative abundances in the ETW and caries groups when compared to the sound group (HBA: 0.42-fold in ETW group and 0.40-fold in caries group; HBB: 0.45-fold in ETW group and 0.38-fold in caries group; p < 0.05). Conclusion: AP from individuals with ETW showed differences when compared to other dental conditions, with relative abundance increasing of some stress response-associated proteins in ETW and a decrease in proteins related to salivary protection against acid challenges.

1.
Carvalho
TS
,
Colon
P
,
Ganss
C
,
Huysmans
MC
,
Lussi
A
,
Schlueter
N
, et al
.
Consensus report of the European federation of conservative dentistry: erosive tooth wear–diagnosis and management
.
Swiss Dent J
.
2016
;
126
(
4
):
342
6
.
2.
Schlueter
N
,
Amaechi
BT
,
Bartlett
D
,
Buzalaf
MAR
,
Carvalho
TS
,
Ganss
C
, et al
.
Terminology of erosive tooth wear: consensus report of a workshop organized by the ORCA and the cariology research group of the IADR
.
Caries Res
.
2020
;
54
(
1
):
2
6
.
3.
Salas
MMS
,
Nascimento
GG
,
Huysmans
MC
,
Demarco
FF
.
Estimated prevalence of erosive tooth wear in permanent teeth of children and adolescents: an epidemiological systematic review and meta-regression analysis
.
J Dent
.
2015
;
43
(
1
):
42
50
.
4.
Schlueter
N
,
Luka
B
.
Erosive tooth wear: a review on global prevalence and on its prevalence in risk groups
.
Br Dent J
.
2018
;
224
(
5
):
364
70
.
5.
Avila
V
,
Díaz-Báez
D
,
Beltrán
EO
,
Castellanos
J
,
Martignon
S
.
Validation of an erosive tooth wear risk factors questionnaire for adolescents
.
Clin Oral Investig
.
2022
;
26
(
4
):
3573
84
.
6.
Buzalaf
MAR
,
Magalhães
AC
,
Rios
D
.
Prevention of erosive tooth wear: targeting nutritional and patient-related risks factors
.
Br Dent J
.
2018
;
224
(
5
):
371
8
.
7.
Hannig
M
,
Joiner
A
.
The structure, function and properties of the acquired pellicle
.
Monogr Oral Sci
.
2006
;
19
:
29
64
.
8.
Thirumala
S
,
Goebel
WS
,
Woods
EJ
.
Clinical grade adult stem cell banking
.
Organogenesis
.
2009
;
5
(
3
):
143
54
.
9.
Buzalaf
MAR
,
Hannas
A
,
Kato
MT
.
Saliva and dental erosion
.
J Appl Oral Sci
.
2012
;
20
(
5
):
493
502
.
10.
Hara
AT
,
Zero
DT
.
The potential of saliva in protecting against dental erosion
.
Monogr Oral Sci
.
2014
;
25
:
197
205
.
11.
Avila
V
,
Betlrán
EO
,
Cortés
A
,
Usuga-Vacca
M
,
Castellanos Parras
JE
,
Diaz-Baez
D
, et al
.
Prevalence of erosive tooth wear and associated risk factors in Colombian adolescents
.
Braz Oral Res
.
2024
;
38
:
e050
.
12.
Hannig
M
.
Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period
.
Clin Oral Investig
.
1999
;
3
(
2
):
88
95
.
13.
Carlén
A
,
Börjesson
AC
,
Nikdel
K
,
Olsson
J
.
Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite
.
Caries Res
.
1998
;
32
(
6
):
447
55
.
14.
Siqueira
WL
,
Custodio
W
,
McDonald
EE
.
New insights into the composition and functions of the acquired enamel pellicle
.
J Dent Res
.
2012
;
91
(
12
):
1110
8
.
15.
Siqueira
WL
,
Oppenheim
FG
.
Small molecular weight proteins/peptides present in the in vivo formed human acquired enamel pellicle
.
Arch Oral Biol
.
2009
;
54
(
5
):
437
44
.
16.
Vukosavljevic
D
,
Custodio
W
,
Siqueira
WL
.
Salivary proteins as predictors and controls for oral health
.
J Cell Commun Signal
.
2011
;
5
(
4
):
271
5
.
17.
Vitorino
R
,
de Morais Guedes
S
,
Ferreira
R
,
Lobo
MJ
,
Duarte
J
,
Ferrer-Correia
AJ
, et al
.
Two-dimensional electrophoresis study of in vitro pellicle formation and dental caries susceptibility
.
Eur J Oral Sci
.
2006
;
114
(
2
):
147
53
.
18.
Yao
Y
,
Berg
EA
,
Costello
CE
,
Troxler
RF
,
Oppenheim
FG
.
Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches
.
J Biol Chem
.
2003
;
278
(
7
):
5300
8
.
19.
Siqueira
WL
,
Zhang
W
,
Helmerhorst
EJ
,
Gygi
SP
,
Oppenheim
FG
.
Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS
.
J Proteome Re
.
2007
;
6
(
6
):
2152
60
.
20.
Cabras
T
,
Manconi
B
,
Iavarone
F
,
Fanali
C
,
Nemolato
S
,
Fiorita
A
, et al
.
RP-HPLC–ESI-MS evidenced that salivary cystatin B is detectable in adult human whole saliva mostly as S-modified derivatives: S-Glutathionyl, S-cysteinyl and S–S 2-mer
.
J Proteomics
.
2012
;
75
(
3
):
908
13
.
21.
Hu
H
,
Burrow
MF
,
Leung
WK
.
A systematic review of the proteomic profile of in vivo acquired enamel pellicle on permanent teeth
.
J Dent
.
2021
;
113
:
103799
.
22.
Pitts
N
,
Zero
D
,
Marsh
P
,
Ekstrand
K
,
Weintraub
J
,
Ramos-Gomez
F
, et al
.
Dental caries
.
Primer
.
2017
;
3
:
17030
.
23.
Trautmann
S
,
Barghash
A
,
Fecher-Trost
C
,
Schalkowsky
P
,
Hannig
C
,
Kirsch
J
, et al
.
Proteomic analysis of the initial oral pellicle in caries-active and caries-free individuals
.
Proteomics Clin Appl
.
2019
;
13
(
4
):
e1800143
.
24.
Carpenter
G
,
Cotroneo
E
,
Moazzez
R
,
Rojas-Serrano
M
,
Donaldson
N
,
Austin
R
, et al
.
Composition of enamel pellicle from dental erosion patients
.
Caries Res
.
2014
;
48
(
5
):
361
7
.
25.
Delecrode
TR
,
Siqueira
WL
,
Zaidan
FC
,
Bellini
MR
,
Moffa
EB
,
Mussi
MC
, et al
.
Identification of acid-resistant proteins in acquired enamel pellicle
.
J Dent
.
2015
;
43
(
12
):
1470
5
.
26.
Aránguiz
V
,
Lara
JS
,
Marró
ML
,
O'Toole
S
,
Ramírez
V
,
Bartlett
D
.
Recommendations and guidelines for dentists using the Basic Erosive Wear Examination index (BEWE)
.
Br Dent J
.
2020
;
228
(
3
):
153
7
.
27.
Bartlett
D
,
Ganss
C
,
Lussi
A
.
Basic Erosive Wear Examination (BEWE): a new scoring system for scientific and clinical needs
.
Clin Oral Investig
.
2008
;
12
(
S1
):
65
8
.
28.
GCCM, Global Collaboratory for Caries Management. [Internet]
. ICCMS caries management system. [cited 2024 Apr 14]. Available from: https://www.iccms-web.com
29.
Martini
T
,
Rios
D
,
Cassiano
LPS
,
Silva
CM
,
Taira
EA
,
Ventura
TMS
, et al
.
Proteomics of acquired pellicle in gastroesophageal reflux disease patients with or without erosive tooth wear
.
J Dent
.
2019
;
81
:
64
9
.
30.
Löe
H
.
The gingival index, the plaque index and the retention index systems
.
J Periodontol
.
1967
;
38
(
6
):
Suppl:610
6
.
31.
Home - Gene – NCBI [internet]
.
National Library of Medicine
. [cited 2023 Nov 4]. Available from: https://www.ncbi.nlm.nih.gov/gene/
32.
Bantscheff
M
,
Boesche
M
,
Eberhard
D
,
Matthieson
T
,
Sweetman
G
,
Kuster
B
.
Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer
.
Mol Cel Proteomics
.
2008
;
7
(
9
):
1702
13
.
33.
Mahoney
DW
,
Therneau
TM
,
Heppelmann
CJ
,
Higgins
L
,
Benson
LM
,
Zenka
RM
, et al
.
Relative quantification: characterization of bias, variability and fold changes in mass spectrometry data from iTRAQ-labeled peptides
.
J Proteome Res
.
2011
;
10
(
9
):
4325
33
.
34.
Lee
YH
,
Zimmerman
JN
,
Custodio
W
,
Xiao
Y
,
Basiri
T
,
Hatibovic-Kofman
S
, et al
.
Proteomic evaluation of acquired enamel pellicle during in vivo formation
.
PLoS One
.
2013
;
8
(
7
):
e67919
.
35.
Ventura
TM
,
Cassiano
LPS
,
Souza E Silva
CM
,
Taira
EA
,
Leite
AL
,
Rios
D
, et al
.
The proteomic profile of the acquired enamel pellicle according to its location in the dental arches
.
Arch Oral Biol
.
2017
;
79
:
20
9
.
36.
Cassiano
LPS
,
Ventura
TMS
,
Silva
CMS
,
Leite
AL
,
Magalhães
AC
,
Pessan
JP
, et al
.
Protein profile of the acquired enamel pellicle after rinsing with whole milk, fat-free milk, and water: an in vivo study
.
Caries Res
.
2018
;
52
(
4
):
288
96
.
37.
Taira
EA
,
Ventura
TMS
,
Cassiano
LPS
,
Silva
CMS
,
Martini
T
,
Leite
AL
, et al
.
Changes in the proteomic profile of acquired enamel pellicles as a function of their time of formation and hydrochloric acid exposure
.
Caries Res
.
2018
;
52
(
5
):
367
77
.
38.
Trautmann
S
,
Künzel
N
,
Fecher-Trost
C
,
Barghash
A
,
Dudek
J
,
Flockerzi
V
, et al
.
Is the proteomic composition of the salivary pellicle dependent on the substrate material
.
Proteomics Clin Appl
.
2022
;
16
(
3
):
e2100109
.
39.
Pelá
VT
,
Ventura
TMO
,
Buzalaf
MAR
.
Optimizing the formation of the acquired enamel pellicle in vitro for proteomic analysis
.
J Appl Oral Sci
.
2020
;
28
:
e20200189
.
40.
Vukosavljevic
D
,
Custodio
W
,
Buzalaf
MAR
,
Hara
AT
,
Siqueira
WL
.
Acquired pellicle as a modulator for dental erosion
.
Arch Oral Biol
.
2014
;
59
(
6
):
631
8
.
41.
Van’T Hof
W
,
Veerman
ECI
,
Nieuw Amerongen
AV
,
Ligtenberg
AJM
.
Antimicrobial defense systems in saliva
.
Monogr Oral Sci
.
2014
;
24
:
40
51
.
42.
Mutahar
M
,
O’Toole
S
,
Carpenter
G
,
Bartlett
D
,
Andiappan
M
,
Moazzez
R
.
Reduced statherin in acquired enamel pellicle on eroded teeth compared to healthy teeth in the same subjects: an in-vivo study
.
PLoS ONE
.
2017
;
12
(
8
):
e0183660
.
43.
Doumas
S
,
Kolokotronis
A
,
Stefanopoulos
P
.
Anti-inflammatory and antimicrobial roles of secretory leukocyte protease inhibitor
.
Infect Immun
.
2005
;
73
(
3
):
1271
4
.
44.
Chivasso
C
,
Nesverova
V
,
Järvå
M
,
Blanchard
A
,
Rose
KL
,
Öberg
FK
, et al
.
Unraveling human AQP5-PIP molecular interaction and effect on AQP5 salivary glands localization in SS patients
.
Cells
.
2021
;
10
(
8
):
2108
.
45.
Silva
NC
,
Ventura
TMO
,
Oliveira
BP
,
dos Santos
NM
,
Pelá
VT
,
Buzalaf
MAR
, et al
.
Proteomic profile of the acquired enamel pellicle of professional wine tasters with erosive tooth wear
.
Eur J Oral Sci
.
2021
;
129
(
3
).
46.
Zhu
Y
,
Marin
LM
,
Xiao
Y
,
Gillies
ER
,
Siqueira
WL
.
pH-sensitive chitosan nanoparticles for salivary protein delivery
.
Nanomaterials
.
2021
;
11
(
4
):
1028
.
47.
Lin
CCJ
,
Lu
BY
,
Chang
JY
.
Conformational stability of secretory leucocyte protease inhibitor: a protein with no hydrophobic core and very little secondary structure
.
Bioch Biophs Acta
.
2006
;
1764
(
7
):
1286
91
.
48.
Nyström
M
,
Bergenfeldt
M
,
Ohlsson
K
.
The elimination of Secretory Leukocyte Protease Inhibitor (SLPI) from the gastrointestinal tract in man
.
Scand J Clin Lab Invest
.
1997
;
57
(
2
):
119
25
.
49.
Hosoi
K
,
Yao
C
,
Hasegawa
T
,
Yoshimura
H
,
Akamatsu
T
.
Dynamics of salivary gland AQP5 under normal and pathologic conditions
.
Int J Mol Sci
.
2020
;
21
(
4
):
1182
.
50.
Vieira
AR
.
Genes involved in saliva formation and composition and their impact on caries susceptibility and erosive tooth wear
.
Monogr Oral Sci
.
2022
;
30
:
85
91
.
51.
ten Gate
JM
,
Imfeld
T
.
Dental erosion, summary
.
Eur J Oral Sci
.
1996
;
104
(
2
):
241
4
.
52.
Shimotoyodome
A
,
Kobayashi
H
,
Tokimitsu
I
,
Matsukubo
T
,
Takaesu
Y
.
Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces
.
Caries Res
.
2006
;
40
(
5
):
403
11
.
53.
Puri
S
,
Edgerton
M
.
How does it kill? understanding the candidacidal mechanism of salivary histatin 5
.
Eukaryot Cell
.
2014
;
13
(
8
):
958
64
.
54.
Pelá
VT
,
Buzalaf
MAR
,
Niemeyer
SH
,
Baumann
T
,
Henrique-Silva
F
,
Toyama
D
, et al
.
Acquired pellicle engineering with proteins/peptides: mechanism of action on native human enamel surface
.
J Dent
.
2021
;
107
:
103612
.
55.
Martini
T
,
Rios
D
,
Dionizio
A
,
Cassiano
LDPS
,
Taioqui Pelá
V
,
E Silva
CMS
, et al
.
Salivary hemoglobin protects against erosive tooth wear in gastric reflux patients
.
Caries Res
.
2020
;
54
(
5–6
):
466
74
.
56.
Yu
YD
,
Zhu
YJ
,
Qi
C
,
Jiang
YY
,
Li
H
,
Wu
J
.
Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers
.
J Colloid Interface Sci
.
2017
;
496
:
416
24
.
57.
Ibrahim
MS
,
Balhaddad
AA
,
Garcia
IM
,
Collares
FM
,
Weir
MD
,
Xu
HHK
, et al
.
pH-responsive calcium and phosphate-ion releasing antibacterial sealants on carious enamel lesions in vitro
.
J Dent
.
2020
;
97
:
103323
.
You do not currently have access to this content.