Introduction: This study aimed to investigate the remineralisation effect of combined use of a bioinspired self-assembling peptide (P26) and fluoride varnish on artificial early enamel caries lesions. Methods: Bovine enamel blocks with artificial early enamel caries lesions were prepared. The blocks were randomly allocated to four experimental groups to receive the following treatments: A = P26 + fluoride varnish, B = P26, C = fluoride varnish, and D. distilled water (negative control). The treated blocks were subjected to pH cycling. Enamel blocks were collected at time points of 7 days (d7) and 21 days (d21). The mineral gain, elemental analysis and crystal characteristics of the caries lesion were assessed by micro-computed tomography, scanning electron microscopy with energy dispersive X-ray and X-ray diffraction (XRD), respectively. Results: The mean ± standard deviation of mineral gain of group A to D were 17.4 ± 4.2%, 10.7 ± 2.2%, 10.1 ± 1.2%, and 6.8 ± 0.5% at d7, respectively, and 15.2 ± 2.6%, 8.7 ± 3.1%, 9.7 ± 1.2%, and 7.8 ± 2.3% at d21, respectively. A significant higher mineral gain was observed in group A when compared to other groups at both d7 and d21 (p < 0.05). The calcium-to-phosphate ratio remained consistent across all groups, ranging between 1.2 and 1.4. XRD analysis indicated that crystal composition on the surfaces was apatite for all groups. Conclusion: In conclusion, the present study provided a first indication of better remineralisation effects of the combined use of the bioinspired self-assembling peptide P26 and fluoride varnish compared to the effects of the respective individual uses of P26 or fluoride varnish.

1.
González-Cabezas
C
,
Fernández
C
.
Recent advances in remineralization therapies for caries lesions
.
Adv Dent J
.
2018
;
29
(
1
):
55
9
. .
2.
Divaris
K
,
Preisser
JS
,
Slade
GD
.
Surface-specific efficacy of fluoride varnish in caries prevention in the primary dentition: results of a community randomized clinical trial
.
Caries Res
.
2013
;
47
(
1
):
78
87
. .
3.
Alkilzy
M
,
Santamaria
RM
,
Schmoeckel
J
,
Splieth
CH
.
Treatment of carious lesions using self-assembling peptides
.
Adv Dent J
.
2018
;
29
(
1
):
42
7
. .
4.
Pandya
M
,
Diekwisch
TG
.
Enamel biomimetics: fiction or future of dentistry
.
Int J Oral Sci
.
2019
;
11
(
1
):
8
. .
5.
Kirkham
J
,
Firth
A
,
Vernals
D
,
Boden
N
,
Robinson
C
,
Shore
RC
, et al
.
Self-assembling peptide scaffolds promote enamel remineralization
.
J Dent Res
.
2007
;
86
(
5
):
426
30
. .
6.
Elsharkawy
S
,
Mata
A
.
Hierarchical biomineralization: from nature's designs to synthetic materials for regenerative medicine and dentistry
.
Adv Healthc Mater
.
2018
;
7
(
18
):
e1800178
. .
7.
Chen
L
,
Yuan
H
,
Tang
B
,
Liang
K
,
Li
J
.
Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro
.
Caries Res
.
2015
;
49
(
3
):
282
90
. .
8.
Chen
M
,
Yang
J
,
Li
J
,
Liang
K
,
He
L
,
Lin
Z
, et al
.
Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin
.
Acta Biomater
.
2014
;
10
(
10
):
4437
46
. .
9.
Honda
MJ
,
Shimodaira
T
,
Ogaeri
T
,
Shinohara
Y
,
Hata
K
,
Ueda
M
.
A novel culture system for porcine odontogenic epithelial cells using a feeder layer
.
Arch Oral Biol
.
2006
;
51
(
4
):
282
90
. .
10.
Lv
X
,
Yang
Y
,
Han
S
,
Li
D
,
Tu
H
,
Li
W
, et al
.
Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries
.
Arch Oral Biol
.
2015
;
60
(
10
):
1482
7
. .
11.
Carneiro
KM
,
Zhai
H
,
Zhu
L
,
Horst
JA
,
Sitlin
M
,
Nguyen
M
, et al
.
Amyloid-like ribbons of amelogenins in enamel mineralization
.
Sci Rep
.
2016
;
6
(
1
):
23105
. .
12.
Fincham
A
,
Moradian-Oldak
J
,
Diekwisch
TG
,
Lyaruu
DM
,
Wright
JT
,
Bringas
P
Jr
, et al
.
Evidence for amelogenin" nanospheres" as functional components of secretory-stage enamel matrix
.
J Struct Biol
.
1995
;
115
(
1
):
50
9
. .
13.
Tarasevich
BJ
,
Lea
S
,
Bernt
W
,
Engelhard
MH
,
Shaw
WJ
.
Changes in the quaternary structure of amelogenin when adsorbed onto surfaces
.
Biopolymers
.
2009
;
91
(
2
):
103
7
. .
14.
Fan
Y
,
Sun
Z
,
Moradian-Oldak
J
.
Controlled remineralization of enamel in the presence of amelogenin and fluoride
.
Biomaterials
.
2009
;
30
(
4
):
478
83
. .
15.
Mukherjee
K
,
Ruan
Q
,
Nutt
S
,
Tao
J
,
De Yoreo
JJ
,
Moradian-Oldak
J
.
Peptide-based bioinspired approach to regrowing multilayered aprismatic enamel
.
Acs Omega
.
2018
;
3
(
3
):
2546
57
. .
16.
Nath
SJC
,
Fu
Y
,
Li
KC
,
Loho
T
,
Loch
C
,
Ekambaram
M
.
A comparison of the enamel remineralisation potential of self-assembling peptides
.
Int Dent J
.
2023
.
S0020-6539(23)00123-5
. .
17.
Ten Cate
J
,
Duijsters
P
.
Alternating demineralization and remineralization of artificial enamel lesions
.
Caries Res
.
1982
;
16
(
3
):
201
10
. .
18.
Wong
PYW
,
Lim
SL
,
Loi
STY
,
Mei
ML
,
Li
KC
,
Aziz
S
, et al
.
A comparative study of two chemical models for creating subsurface caries lesions on aprismatic and prismatic enamel
.
J Oral Sci
.
2023
;
65
(
1
):
20
3
. .
19.
Alkilzy
M
,
Tarabaih
A
,
Santamaria
RM
,
Splieth
CH
.
Self-assembling peptide P11-4 and fluoride for regenerating enamel
.
J Dent Res
.
2018
;
97
(
2
):
148
54
. .
20.
Cheng
X
,
Xu
P
,
Zhou
X
,
Deng
M
,
Cheng
L
,
Li
M
, et al
.
Arginine promotes fluoride uptake into artificial carious lesions in vitro
.
Aust Dent J
.
2015
;
60
(
1
):
104
11
. .
21.
Bijle
MNA
,
Ekambaram
M
,
Lo
EC
,
Yiu
CKY
.
The combined enamel remineralization potential of arginine and fluoride toothpaste
.
J Dent
.
2018
;
76
:
75
82
. .
22.
Schwass
D
,
Swain
MV
,
Purton
DG
,
Leichter
JW
.
A system of calibrating microtomography for use in caries research
.
Caries Res
.
2009
;
43
(
4
):
314
21
. .
23.
Cao
Y
,
Mei
ML
,
Xu
J
,
Lo
ECM
,
Li
Q
,
Chu
CH
.
Biomimetic mineralisation of phosphorylated dentine by CPP-ACP
.
J Dent
.
2013
;
41
(
9
):
818
25
. .
24.
Mei
ML
,
Ito
L
,
Chu
CH
,
Lo
ECM
,
Zhang
CF
.
Prevention of dentine caries using silver diamine fluoride application followed by Er:YAG laser irradiation: an in vitro study
.
Lasers Med Sci
.
2014
;
29
(
6
):
1785
91
. .
25.
Yu
OY
,
Mei
ML
,
Zhao
IS
,
Lo
ECM
,
Chu
CH
.
Effects of fluoride on two chemical models of enamel demineralization
.
Materials
.
2017
;
10
(
11
):
1245
. .
26.
Mohd Said
SN
,
Ekambaram
M
,
Yiu
CK
.
Effect of different fluoride varnishes on remineralization of artificial enamel carious lesions
.
Int J Paediatr Dent
.
2017
;
27
(
3
):
163
73
. .
27.
Alamoudi
SA
,
Pani
SC
,
Alomari
M
.
The effect of the addition of tricalcium phosphate to 5% sodium fluoride varnishes on the microhardness of enamel of primary teeth
.
Int J Dent
.
2013
;
2013
:
486358
. .
28.
Tuloglu
N
,
Bayrak
S
,
Tunc
ES
,
Ozer
F
.
Effect of fluoride varnish with added casein phosphopeptide-amorphous calcium phosphate on the acid resistance of the primary enamel
.
BMC Oral Health
.
2016
;
16
(
1
):
103
. .
29.
Wierichs
RJ
,
Stausberg
S
,
Lausch
J
,
Meyer-Lueckel
H
,
Esteves-Oliveira
M
.
Caries-preventive effect of NaF, NaF plus TCP, NaF plus CPP-ACP, and SDF varnishes on sound dentin and artificial dentin caries in vitro
.
Caries Res
.
2018
;
52
(
3
):
199
211
. .
30.
Mukherjee
K
,
Chakraborty
A
,
Sandhu
G
,
Naim
S
,
Bauza Nowotny
E
,
Moradian-Oldak
J
.
Amelogenin peptide-chitosan hydrogel for biomimetic enamel regrowth
.
Front Dent Med
.
2021
;
2
:
37
. .
31.
Mukherjee
K
, et al
.
Repairing human tooth enamel with leucine-rich amelogenin peptide-chitosan hydrogel (vol 31, pg 556, 2016)
.
J Mater Res
.
2016
;
31
(
6
):
821
.
32.
Londoño-Restrepo
SM
,
Millán-Malo
BM
,
Del Real-López
A
,
Rodriguez-García
ME
.
In situ study of hydroxyapatite from cattle during a controlled calcination process using HT-XRD
.
Mater Sci Eng C Mater Biol Appl
.
2019
;
105
:
110020
. .
33.
Ooi
C
,
Hamdi
M
,
Ramesh
S
.
Properties of hydroxyapatite produced by annealing of bovine bone
.
Ceram Int
.
2007
;
33
(
7
):
1171
7
. .
34.
Licata
O
,
Guha
U
,
Poplawsky
JD
,
Aich
N
,
Mazumder
B
.
Probing heterogeneity in bovine enamel composition through nanoscale chemical imaging using atom probe tomography
.
Arch Oral Biol
.
2020
;
112
:
104682
. .
35.
Lippert
F
,
Juthani
K
.
Fluoride dose-response of human and bovine enamel artificial caries lesions under pH-cycling conditions
.
Clin Oral Investig
.
2015
;
19
(
8
):
1947
54
. .
36.
Attin
T
,
Wegehaupt
F
,
Gries
D
,
Wiegand
A
.
The potential of deciduous and permanent bovine enamel as substitute for deciduous and permanent human enamel: erosion–abrasion experiments
.
J Dent
.
2007
;
35
(
10
):
773
7
. .
You do not currently have access to this content.