Introduction: Statherin-derived peptide (StatpSpS) has shown promise against erosive tooth wear. To elucidate its interaction with the hydroxyapatite (HAP) surface, the mechanism related to adsorption of this peptide with HAP was investigated through nanosecond-long all-atom molecular dynamics simulations. Methods: StatpSpS was positioned parallel to the HAP surface in 2 orientations: 1 – neutral and negative residues facing the surface and 2 – positive residues facing the surface. A system containing StatpSpS without HAP was also simulated as control. In the case of systems with HAP, both partially restrained surface and unrestrained surface were constructed. Structural analysis, interaction pattern, and binding-free energy were calculated. Results: In the peptide system without the HAP, there were some conformational changes during the simulation. In the presence of the surface, only moderate changes were observed. Many residues exhibited short and stable distances to the surface, indicating strong interaction. Specially, the residues ASP1 and SER2 have an important role to anchor the peptide to the surface, with positively charged residues, mainly arginine, playing a major role in the further stabilization of the peptide in an extended conformation, with close contacts to the HAP surface. Conclusion: The interaction between StatpSpS and HAP is strong, and the negative charged residues are important to the anchoring of the peptide in the surface, but after the initial placement the peptide rearranges itself to maximize the interactions between positive charged residues.

1.
Dickens
B
,
Brown
WE
.
The crystal structure of CaKAsO48H2O
.
Acta Crystallogr
.
1972
;
28
(
10
):
3056
65
.
2.
Ten Cate
NA
.
Ten Cate’s oral histology: development, structure, and function
. 7 ed.
Rio de Janeiro
:
Elsevier
;
2008
; p.
432
.
3.
Kay
MI
,
Young
RA
,
Posner
AS
.
Crystal structure of hydroxyapatite
.
Nature
.
1964
;
204
:
1050
2
.
4.
Elliott
JC
.
Recent progress in the chemistry, crystal chemistry and structure of the apatites
.
Calcif Tissue Res
.
1969
;
3
(
4
):
293
307
.
5.
Margolis
HC
,
Kwak
SY
,
Yamazaki
H
.
Role of mineralization inhibitors in the regulation of hard tissue biomineralization: relevance to initial enamel formation and maturation
.
Front Physiol
.
2014
;
5
:
339
.
6.
Nicolau
J
.
Fundamentos de odontologia – fundamentos em bioquímica oral
.
Rio de Janeiro
:
Guanabara Koogan
;
2008
; p.
160
.
7.
He
LH
,
Swain
MV
.
Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics
.
J Mech Behav Biomed Mater
.
2008
;
1
(
1
):
18
29
.
8.
Wakasa
M
,
Nakanishi
K
,
Manago
K
,
Isobe
T
,
Eshita
Y
,
Okamoto
M
, et al
.
Fine structure of tooth enamel in the yellowing human teeth: SEM and HRTEM studies
.
Microsc Res Tech
.
2016
;
79
(
1
):
14
22
.
9.
Dodds
MW
,
Johnson
DA
,
Yeh
CK
.
Health benefits of saliva: a review
.
J Dent
.
2005
;
33
(
3
):
223
33
.
10.
Dawes
C
,
Jenkins
GN
,
Tongue
CH
.
The nomenclature of the integuments of the enamel surface of the teeth
.
Br Dent J
.
1963
;
115
:
65
8
.
11.
Hannig
M
,
Balz
M
.
Influence of in vivo formed salivary pellicle on enamel erosion
.
Caries Res
.
1999
;
33
(
5
):
372
9
.
12.
Hannig
M
,
Joiner
A
.
The structure, function and properties of the acquired pellicle
.
Monogr Oral Sci
.
2006
;
19
:
29
64
.
13.
Hannig
M
.
Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period
.
Clin Oral Investig
.
1999
;
3
(
2
):
88
95
.
14.
Siqueira
WL
,
Custodio
W
,
McDonald
EE
.
New insights into the composition and functions of the acquired enamel pellicle
.
J Dent Res
.
2012
;
91
(
12
):
1110
8
.
15.
Jensen
JL
,
Lamkin
MS
,
Oppenheim
FG
.
Adsorption of human salivary proteins to hydroxyapatite: a comparison between whole saliva and glandular salivary secretions
.
J Dent Res
.
1992
;
71
(
9
):
1569
76
.
16.
Lamkin
MS
,
Arancillo
AA
,
Oppenheim
FG
.
Temporal and compositional characteristics of salivary protein adsorption to hydroxyapatite
.
J Dent Res
.
1996
;
75
(
2
):
803
8
.
17.
Vacca Smith
AM
,
Bowen
WH
.
In situ studies of pellicle formation on hydroxyapatite discs
.
Arch Oral Biol
.
2000
;
45
(
4
):
277
91
.
18.
Enax
J
,
Ganss
B
,
Amaechi
BT
,
Schulze Zur Wiesche
E
,
Meyer
F
.
The composition of the dental pellicle: an updated literature review
.
Front Oral Health
.
2023
;
4
:
1260442
.
19.
Chawhuaveang
DD
,
Yu
OY
,
Yin
IX
,
Lam
WY
,
Mei
ML
,
Chu
CH
.
Acquired salivary pellicle and oral diseases: a literature review
.
J Dent Sci
.
2021
;
16
(
1
):
523
9
.
20.
Trautmann
S
,
Künzel
N
,
Fecher-Trost
C
,
Barghash
A
,
Schalkowsky
P
,
Dudek
J
, et al
.
Deep proteomic insights into the individual short-term pellicle formation on enamel-an in situ pilot study
.
Proteomics Clin Appl
.
2020
;
14
(
6
):
e2070054
.
21.
Hannig
M
,
Fiebiger
M
,
Güntzer
M
,
Döbert
A
,
Zimehl
R
,
Nekrashevych
Y
.
Protective effect of the in situ formed short-term salivary pellicle
.
Arch Oral Biol
.
2004
;
49
(
11
):
903
10
.
22.
Ventura
TMDS
,
Cassiano
LPS
,
Souza E Silva
CM
,
Taira
EA
,
Leite
AL
,
Rios
D
, et al
.
The proteomic profile of the acquired enamel pellicle according to its location in the dental arches
.
Arch Oral Biol
.
2017
;
79
:
20
9
.
23.
Delecrode
TR
,
Siqueira
WL
,
Zaidan
FC
,
Bellini
MR
,
Moffa
EB
,
Mussi
MC
, et al
.
Identification of acid-resistant proteins in acquired enamel pellicle
.
J Dent
.
2015
;
43
(
12
):
1470
5
.
24.
Carvalho
TS
,
Araújo
TT
,
Ventura
TMO
,
Dionizio
A
,
Câmara
JVF
,
Moraes
SM
, et al
.
Acquired pellicle protein-based engineering protects against erosive demineralization
.
J Dent
.
2020
;
102
:
103478
.
25.
Araújo
TT
,
Carvalho
TS
,
Dionizio
A
,
Debortolli
ALB
,
Ventura
TMO
,
Souza
BM
, et al
.
Protein-based engineering of the initial acquired enamel pellicle in vivo: proteomic evaluation
.
J Dent
.
2022
;
116
:
103874
.
26.
Marin
LM
,
Xiao
Y
,
Cury
JA
,
Siqueira
WL
.
Modulation of Streptococcus mutans adherence to hydroxyapatite by engineered salivary peptides
.
Microorganisms
.
2022
;
10
(
2
):
223
.
27.
Taira
EA
,
Ventura
TMS
,
Cassiano
LPS
,
Silva
CMS
,
Martini
T
,
Leite
AL
, et al
.
Changes in the proteomic profile of acquired enamel pellicles as a function of their time of formation and hydrochloric acid exposure
.
Caries Res
.
2018
;
52
(
5
):
367
77
.
28.
Lamkin
MS
,
Oppenheim
FG
.
Structural features of salivary function
.
Crit Rev Oral Biol Med
.
1993
;
4
(
3–4
):
251
9
.
29.
Makrodimitris
K
,
Masica
DL
,
Kim
ET
,
Gray
JJ
.
Structure prediction of protein-solid surface interactions reveals a molecular recognition motif of statherin for hydroxyapatite
.
J Am Chem Soc
.
2007
;
129
(
44
):
13713
22
.
30.
Raj
PA
,
Johnsson
M
,
Levine
MJ
,
Nancollas
GH
.
Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization
.
J Biol Chem
.
1992
;
267
(
9
):
5968
76
.
31.
Shah
S
,
Kosoric
J
,
Hector
MP
,
Anderson
P
.
An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length
.
Eur J Oral Sci
.
2011
;
119
(
Suppl 1
):
13
8
.
32.
Taira
EA
,
Carvalho
G
,
Ferrari
CR
,
Martini
T
,
Pelá
VT
,
Ventura
TMO
, et al
.
Statherin-derived peptide protects against intrinsic erosion
.
Arch Oral Biol
.
2020
;
119
:
104890
.
33.
Reis
FN
,
Francese
MM
,
da Silva
NDG
,
Pelá
VT
,
Câmara
JVF
,
Trevizol
JS
, et al
.
Solutions containing a statherin-derived peptide reduce enamel erosion in vitro
.
Caries Res
.
2023
;
57
(
1
):
52
8
.
34.
Reis
FN
,
Francese
MM
,
Silva
NDGD
,
Pelá
VT
,
Câmara
JVF
,
Trevizol
JS
, et al
.
Gels containing statherin-derived peptide protect against enamel and dentin erosive tooth wear in vitro
.
J Mech Behav Biomed Mater
.
2023
;
137
:
105549
.
35.
UniProt Consortium
.
UniProt: the universal protein knowledgebase in 2023
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D523
31
.
36.
Jumper
J
,
Evans
R
,
Pritzel
A
,
Green
T
,
Figurnov
M
,
Ronneberger
O
, et al
.
Highly accurate protein structure prediction with AlphaFold
.
Nature
.
2021
;
596
(
7873
):
583
9
.
37.
Jensen
JL
,
Lamkin
MS
,
Troxler
RF
,
Oppenheim
FG
.
Multiple forms of statherin in human salivary secretions
.
Arch Oral Biol
.
1991
;
36
(
7
):
529
34
.
38.
Jo
S
,
Kim
T
,
Iyer
VG
,
Im
W
.
CHARMM-GUI: a web-based graphical user interface for CHARMM
.
J Comput Chem
.
2008
;
29
(
11
):
1859
65
.
39.
Abraham
MJ
,
Murtola
T
,
Schulz
R
,
Páll
S
,
Smith
JC
,
Hess
B
, et al
.
GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
.
SoftwareX
.
2015
;
1-2
:
19
25
.
40.
Lee
J
,
Cheng
X
,
Swails
JM
,
Yeom
MS
,
Eastman
PK
,
Lemkul
JA
, et al
.
CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field
.
J Chem Theor Comput
.
2016
;
12
(
1
):
405
13
.
41.
Heinz
H
,
Lin
TJ
,
Mishra
RK
,
Emami
FS
.
Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field
.
Langmuir
.
2013
;
29
(
6
):
1754
65
.
42.
Lin
TJ
,
Heinz
H
.
Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, Mechanics, hydration, and biological interfaces
.
J Phy Chem
.
2016
;
120
(
9
):
4975
92
.
43.
Masica
DL
.
Structure determination and design of biomineral-associated proteins [dissertation]
.
Johns Hopkins University
;
2009
.
44.
Pan
H
,
Tao
J
,
Yu
X
,
Fu
L
,
Zhang
J
,
Zeng
X
, et al
.
Anisotropic demineralization and oriented assembly of hydroxyapatite crystals in enamel: smart structures of biominerals
.
J Phys Chem B
.
2008
;
112
(
24
):
7162
5
.
45.
Camargo
CLM
,
Resende
NS
,
Perez
CAC
,
Abreu
CRA
,
Salim
VMM
,
Tavares
FW
.
Molecular dynamics simulation and experimental validation by X-ray data of hydroxyapatite crystalline structures
.
Fluid Phase Equilibria
.
2018
;
470
:
60
7
.
46.
Garley
A
,
Hoff
SE
,
Saikia
N
,
Jamadagni
S
,
Baig
A
,
Heinz
H
.
Adsorption and substitution of metal ions on hydroxyapatite as a function of crystal facet and electrolyte pH
.
J Phys Chem
.
2019
;
123
(
27
):
16982
93
.
47.
Humphrey
W
,
Dalke
A
,
Schulten
K
.
VMD - visual molecular dynamics
.
J Mol Graph
.
1996
;
14
(
1
):
33
28
.
48.
Jorgensen
WL
,
Chandrasekhar
J
,
Madura
JD
,
Impey
RW
,
Klein
ML
.
Comparison of simple potential functions for simulating liquid water
.
J Chem Phys
.
1983
;
79
(
2
):
926
35
.
49.
Darden
T
,
York
D
,
Pedersen
L
.
Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems
.
J Chem Phys
.
1993
;
98
(
12
):
10089
92
.
50.
Essmann
U
,
Perera
L
,
Berkowitz
ML
,
Darden
T
,
Lee
H
,
Pedersen
LG
.
A smooth particle mesh Ewald method
.
J Chem Phys
.
1995
;
103
(
19
):
8577
93
.
51.
Bussi
G
,
Donadio
D
,
Parrinello
M
.
Canonical sampling through velocity rescaling
.
J Chem Phys
.
2007
;
126
(
1
):
014101
.
52.
Parrinello
M
,
Rahman
A
.
Polymorphic transitions in single crystals: a new molecular dynamics method
.
J Appl Phys
.
1981
;
52
(
12
):
7182
90
.
53.
Lindahl
E
,
Abraham
T
,
Hess
B
,
van der Spoel
D
.
GROMACS 2020.6 Source code (2020.6)
.
Zenodo
;
2021
.
54.
Srinivasan
J
,
Cheatham
TE
,
Cieplak
P
,
Kollman
PA
,
Case
DA
.
Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate− DNA helices
.
J Am Chem Soc
.
1998
;
120
(
37
):
9401
9
.
55.
Massova
I
,
Kollman
PA
.
Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding
.
Perspect Drug Discov Des
.
2000
;
18
(
1
):
113
35
.
56.
Genheden
S
,
Ryde
U
.
The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities
.
Expert Opin Drug Discov
.
2015
;
10
(
5
):
449
61
.
57.
Miller
BR
3rd
,
McGee
TD
Jr
,
Swails
JM
,
Homeyer
N
,
Gohlke
H
,
Roitberg
AE
.
MMPBSA.py: an efficient program for end-state free energy calculations
.
J Chem Theor Comput
.
2012
;
8
(
9
):
3314
21
.
58.
Valdés-Tresanco
MS
,
Valdés-Tresanco
ME
,
Valiente
PA
,
Moreno
E
.
gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS
.
J Chem Theor Comput
.
2021
;
17
(
10
):
6281
91
.
59.
Sundarabharathi
L
,
Ponnamma
D
,
Parangusan
H
,
Chinnaswamy
M
,
AlMaadeed
MAA
.
Effect of anions on the structural,morphological and dielectric properties of hydrothermally synthesized hydroxyapatitenanoparticles
.
SN Appl Sci
.
2020
;
2
(
1
):
94
.
60.
Onufriev
A
,
Bashford
D
,
Case
DA
.
Exploring protein native states and large-scale conformational changes with a modified generalized born model
.
Proteins
.
2004
;
55
(
2
):
383
94
.
61.
Bhowmik
R
,
Katti
KS
,
Katti
D
.
Molecular dynamics simulation of hydroxyapatite-polyacrylic acid interfaces
.
Polymer
.
2007
;
48
(
2
):
664
74
.
62.
Zhang
HP
,
Lu
X
,
Leng
Y
,
Fang
L
,
Qu
S
,
Feng
B
, et al
.
Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents
.
Acta Biomater
.
2009
;
5
(
4
):
1169
81
.
63.
Mao
J
,
Shi
X
,
Wu
YB
,
Gong
SQ
.
Identification of specific hydroxyapatite {001} binding heptapeptide by phage display and its nucleation effect
.
Materials
.
2016
;
9
(
8
):
700
.
64.
Zhao
W
,
Xu
Z
,
Cui
Q
,
Sahai
N
.
Predicting the structure-activity relationship of hydroxyapatite-binding peptides by enhanced-sampling molecular simulation
.
Langmuir
.
2016
;
32
(
27
):
7009
22
.
65.
Pacella
MS
,
Koo
DCE
,
Thottungal
RA
,
Gray
JJ
.
Using the RosettaSurface algorithm to predict protein structure at mineral surfaces
.
Methods Enzymol
.
2013
;
532
:
343
66
.
66.
Xu
Z
,
Wei
Q
,
Zhao
W
,
Cui
Q
,
Sahai
N
.
Essence of small molecule-mediated control of hydroxyapatite growth: free energy calculations of amino acid side chain analogues
.
J Phys Chem
.
2018
;
122
(
8
):
4372
80
.
67.
Ling
C
,
Zhao
W
,
Wang
Z
,
Chen
J
,
Ustriyana
P
,
Gao
M
, et al
.
Structure-activity relationships of hydroxyapatite-binding peptides
.
Langmuir
.
2020
;
36
(
10
):
2729
39
.
68.
Duanis-Assaf
T
,
Hu
T
,
Lavie
M
,
Zhang
Z
,
Reches
M
.
Understanding the adhesion mechanism of hydroxyapatite-binding peptide
.
Langmuir
.
2022
;
38
(
3
):
968
78
.
69.
Palmer
LC
,
Newcomb
CJ
,
Kaltz
SR
,
Spoerke
ED
,
Stupp
SI
.
Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel
.
Chem Rev
.
2008
;
108
(
11
):
4754
83
.
70.
Paine
ML
,
White
SN
,
Luo
W
,
Fong
H
,
Sarikaya
M
,
Snead
ML
.
Regulated gene expression dictates enamel structure and tooth function
.
Matrix Biol
.
2001
;
20
(
5–6
):
273
92
.
71.
Kirkham
J
,
Zhang
J
,
Brookes
SJ
,
Shore
RC
,
Wood
SR
,
Smith
DA
, et al
.
Evidence for charge domains on developing enamel crystal surfaces
.
J Dent Res
.
2000
;
79
(
12
):
1943
7
.
72.
Wang
RZ
,
Weiner
S
.
Strain-structure relations in human teeth using Moiré fringes
.
J Biomech
.
1998
;
31
(
2
):
135
41
.
73.
Luo
M
,
Gao
Y
,
Yang
S
,
Quan
X
,
Sun
D
,
Liang
K
, et al
.
Computer simulations of the adsorption of an N-terminal peptide of statherin, SN15, and its mutants on hydroxyapatite surfaces
.
Phys Chem Chem Phys
.
2019
;
21
(
18
):
9342
51
.
74.
Lynge Pedersen
AM
,
Belstrøm
D
.
The role of natural salivary defences in maintaining a healthy oral microbiota
.
J Dent
.
2019
;
80
(
Suppl 1
):
S3
12
.
75.
Masica
DL
,
Gray
JJ
.
Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system
.
Biophys J
.
2009
;
96
(
8
):
3082
91
.
76.
Masica
DL
,
Ash
JT
,
Ndao
M
,
Drobny
GP
,
Gray
JJ
.
Toward a structure determination method for biomineral-associated protein using combined solid- state NMR and computational structure prediction
.
Structure
.
2010
;
18
(
12
):
1678
87
.
77.
Schwartz
SS
,
Hay
DI
,
Schluckebier
SK
.
Inhibition of calcium phosphate precipitation by human salivary statherin: structure-activity relationships
.
Calcif Tissue Int
.
1992
;
50
(
6
):
511
7
.
78.
Xiao
Y
,
Karttunen
M
,
Jalkanen
J
,
Mussi
MC
,
Liao
Y
,
Grohe
B
, et al
.
Hydroxyapatite growth inhibition effect of pellicle statherin peptides
.
J Dent Res
.
2015
;
94
(
8
):
1106
12
.
79.
Ding
L
,
Zeng
J
,
Luo
M
,
Zhou
J
.
Molecular simulation of statherin adsorption on hydroxyapatite (001) surface
.
Adv Mater Inter
.
2022
;
9
(
33
):
2201289
.
80.
Capriotti
LA
,
Beebe
TP
Jr
,
Schneider
JP
.
Hydroxyapatite surface-induced peptide folding
.
J Am Chem Soc
.
2007
;
129
(
16
):
5281
7
.
81.
Pelá
VT
,
Buzalaf
MAR
,
Niemeyer
SH
,
Baumann
T
,
Henrique-Silva
F
,
Toyama
D
, et al
.
Acquired pellicle engineering with proteins/peptides: mechanism of action on native human enamel surface
.
J Dent
.
2021
;
107
:
103612
.
82.
Ventura
TMO
,
Buzalaf
MAR
,
Baumann
T
,
Pelá
VT
,
Niemeyer
SH
,
Crusca
E
, et al
.
New insights into the protective effect of statherin-derived peptide for different acquired enamel pellicle formation times on the native human enamel surfaces
.
Arch Oral Biol
.
2023
;
148
:
105643
.
You do not currently have access to this content.