Introduction: This study investigated the changes in the acquired enamel pellicle (AEP) proteome when this integument is formed in vivo after treatment with sugarcane-derived cystatin (CaneCPI-5), hemoglobin (HB), and a statherin-derived peptide (StN15), or their combination and then exposed to an intrinsic acid challenge. The effectiveness of these treatments in preventing intrinsic erosion was also evaluated. Methods: Ten volunteers, after prophylaxis, in 5 crossover phases, rinsed with the following solutions (10 mL, 1 min): control (deionized water-H2O) – group 1, 0.1 mg/mL CaneCPI-5 – group 2, 1.0 mg/mL HB – group 3, 1.88 × 10−5M StN15 – group 4, or a blend of these – group 5. Following this, AEP formation occurred (2 h) and an enamel biopsy (10 µL, 0.01 m HCl, pH 2.0, 10 s) was conducted on one incisor. The biopsy acid was then analyzed for calcium (Arsenazo method). The vestibular surfaces of the other teeth were treated with the same acid. Acid-resistant proteins in the residual AEP were then collected and analyzed quantitatively via proteomics. Results: Compared to control, treatment with the proteins/peptide, mixed or isolated, markedly enhanced acid-resistant proteins in the AEP. Notable increases occurred in pyruvate kinase PKM (11-fold, CaneCPI-5), immunoglobulins and submaxillary gland androgen-regulated protein 3B (4-fold, StN15), Hb, and lysozyme C (2-fold, StN15). Additionally, a range of proteins not commonly identified in the AEP but known to bind calcium or other proteins were identified in groups treated with the tested proteins/peptide either in isolation or as a mixture. The mean (SD, mM) calcium concentrations released from enamel were 3.67 ± 1.48a, 3.11 ± 0.72a, 1.94 ± 0.57b, 2.37 ± 0.90a, and 2.38 ± 0.45a for groups 1–5, respectively (RM-ANOVA/Tukey, p < 0.05). Conclusions: Our findings demonstrate that all treatments, whether using a combination of proteins/peptides or in isolation, enhanced acid-resistant proteins in the AEP. However, only HB showed effectiveness in protecting against intrinsic erosive demineralization. These results pave the way for innovative preventive methods against intrinsic erosion, using “acquired pellicle engineering” techniques.

1.
Slomiany
BL
,
Murty
VL
,
Zdebska
E
,
Slomiany
A
,
Gwozdzinski
K
,
Mandel
ID
.
Tooth surface-pellicle lipids and their role in the protection of dental enamel against lactic-acid diffusion in man
.
Arch Oral Biol
.
1986
;
31
(
3
):
187
91
. .
2.
Dawes
C
,
Jenkins
GN
,
Tonge
CH
.
The nomenclature of the integuments of the enamel surface of the teeth
.
Br Dent J
.
1963
;
115
:
65
8
.
3.
Hara
AT
,
Ando
M
,
Gonzalez-Cabezas
C
,
Cury
JA
,
Serra
MC
,
Zero
DT
.
Protective effect of the dental pellicle against erosive challenges in situ
.
J Dent Res
.
2006
;
85
(
7
):
612
6
. .
4.
Buzalaf
MA
,
Hannas
AR
,
Kato
MT
.
Saliva and dental erosion
.
J Appl Oral Sci
.
2012
;
20
(
5
):
493
502
. .
5.
Vukosavljevic
D
,
Custodio
W
,
Buzalaf
MA
,
Hara
AT
,
Siqueira
WL
.
Acquired pellicle as a modulator for dental erosion
.
Arch Oral Biol
.
2014
;
59
(
6
):
631
8
. .
6.
Hannig
M
.
Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period
.
Clin Oral Investig
.
1999
;
3
(
2
):
88
95
. .
7.
Hay
DI
.
The interaction of human parotid salivary proteins with hydroxyapatite
.
Arch Oral Biol
.
1973
;
18
(
12
):
1517
29
. .
8.
Hannig
C
,
Berndt
D
,
Hoth-Hannig
W
,
Hannig
M
.
The effect of acidic beverages on the ultrastructure of the acquired pellicle--an in situ study
.
Arch Oral Biol
.
2009
;
54
(
6
):
518
26
. .
9.
Hannig
M
,
Hannig
C
.
The pellicle and erosion
.
Monogr Oral Sci
.
2014
;
25
:
206
14
. .
10.
Delecrode
TR
,
Siqueira
WL
,
Zaidan
FC
,
Bellini
MR
,
Moffa
EB
,
Mussi
MC
, et al
.
Identification of acid-resistant proteins in acquired enamel pellicle
.
J Dent
.
2015
;
43
(
12
):
1470
5
. .
11.
Taira
EA
,
Ventura
TMS
,
Cassiano
LPS
,
Silva
CMS
,
Martini
T
,
Leite
AL
, et al
.
Changes in the proteomic profile of acquired enamel pellicles as a function of their time of formation and hydrochloric acid exposure
.
Caries Res
.
2018
;
52
(
5
):
367
77
. .
12.
Martini
T
,
Rios
D
,
Cassiano
LPS
,
Silva
CMS
,
Taira
EA
,
Ventura
TMS
, et al
.
Proteomics of acquired pellicle in gastroesophageal reflux disease patients with or without erosive tooth wear
.
J Dent
.
2019
;
81
:
64
9
. .
13.
Carvalho
TS
,
Araujo
TT
,
Ventura
TMO
,
Dionizio
A
,
Camara
JVF
,
Moraes
SM
, et al
.
Acquired pellicle protein-based engineering protects against erosive demineralization
.
J Dent
.
2020
;
102
:
103478
. .
14.
Choi
M
,
Chang
CY
,
Clough
T
,
Broudy
D
,
Killeen
T
,
MacLean
B
, et al
.
MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments
.
Bioinformatics
.
2014
;
30
(
17
):
2524
6
. .
15.
Vogel
GL
,
Chow
LC
,
Carey
CM
,
Schumacher
GE
,
Takagi
S
.
Effect of a calcium prerinse on salivary fluoride after a 228-ppm fluoride rinse
.
Caries Res
.
2006
;
40
(
2
):
178
80
. .
16.
Siqueira
WL
,
Zhang
W
,
Helmerhorst
EJ
,
Gygi
SP
,
Oppenheim
FG
.
Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS
.
J Proteome Res
.
2007
;
6
(
6
):
2152
60
. .
17.
Ventura
TMS
,
Cassiano
LPS
,
Souza E Silva
CM
,
Taira
EA
,
Leite
AL
,
Rios
D
, et al
.
The proteomic profile of the acquired enamel pellicle according to its location in the dental arches
.
Arch Oral Biol
.
2017
;
79
:
20
9
. .
18.
Araujo
TT
,
Camiloti
GD
,
Valle
AD
,
Silva
NDG
,
Souza
BM
,
Carvalho
TS
, et al
.
A sugarcane cystatin (CaneCPI-5) alters microcosm biofilm formation and reduces dental caries
.
Biofouling
.
2021
;
37
(
1
):
109
16
. .
19.
Pela
VT
,
Lunardelli
JGQ
,
Tokuhara
CK
,
Gironda
CC
,
Silva
NDG
,
Carvalho
TS
, et al
.
Safety and in situ antierosive effect of CaneCPI-5 on dental enamel
.
J Dent Res
.
2021
;
100
(
12
):
1344
50
. .
20.
Pela
VT
,
Ventura
TMO
,
Taira
EA
,
Thomassian
LTG
,
Brito
L
,
Matuhara
YE
, et al
.
Use of Reflectometer Optipen to assess the preventive effect of a sugarcane cystatin on initial dental erosion in vivo
.
J Mech Behav Biomed Mater
.
2023
;
141
:
105782
. .
21.
Santiago
AC
,
Khan
ZN
,
Miguel
MC
,
Gironda
CC
,
Soares-Costa
A
,
Pela
VT
, et al
.
A new sugarcane cystatin strongly binds to dental enamel and reduces erosion
.
J Dent Res
.
2017
;
96
(
9
):
1051
7
. .
22.
Martini
T
,
Rios
D
,
Dionizio
A
,
Cassiano
LPS
,
Taioqui Pelá
V
,
E Silva
CMS
, et al
.
Salivary hemoglobin protects against erosive tooth wear in gastric reflux patients
.
Caries Res
.
2020
;
54
(
5–6
):
466
74
. .
23.
Taira
EA
,
Carvalho
G
,
Ferrari
CR
,
Martini
T
,
Pela
VT
,
Ventura
TMO
, et al
.
Statherin-derived peptide protects against intrinsic erosion
.
Arch Oral Biol
.
2020
;
119
:
104890
. .
24.
Reis
FN
,
Francese
MM
,
Silva
N
,
Pela
VT
,
Camara
JVF
,
Trevizol
JS
, et al
.
Gels containing statherin-derived peptide protect against enamel and dentin erosive tooth wear in vitro
.
J Mech Behav Biomed Mater
.
2023
;
137
:
105549
. .
25.
Martini
T
,
Rios
D
,
Dionizio
A
,
Cassiano
LPS
,
Silva
CMSE
,
Taira
EA
, et al
.
Acquired enamel pellicle protects gastroesophageal reflux disease patients against erosive tooth wear
.
Braz Oral Res
.
2023
;
37
(
37
):
e085
. .
26.
Moazzez
R
,
Bartlett
D
.
Intrinsic causes of erosion
.
Monogr Oral Sci
.
2014
;
25
:
180
96
. .
27.
Shah
S
,
Kosoric
J
,
Hector
MP
,
Anderson
P
.
An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length
.
Eur J Oral Sci
.
2011
;
119
(
Suppl 1
):
13
8
. .
28.
Raj
PA
,
Johnsson
M
,
Levine
MJ
,
Nancollas
GH
.
Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization
.
J Biol Chem
.
1992
;
267
(
9
):
5968
76
. .
29.
Kosoric
J
,
Williams
RAD
,
Hector
MP
,
Anderson
PA
.
A synthetic peptide based on a natural salivary protein reduces demineralisation in model systems for dental caries and erosion
.
Int J Pept Res Ther
.
2007
;
13
(
4
):
497
503
. .
30.
Kawasaki
T
,
Takahashi
S
,
Ikeda
K
.
Hydroxyapatite high-performance liquid chromatography: column performance for proteins
.
Eur J Biochem
.
1985
;
152
(
2
):
361
71
. .
31.
Araujo
TT
,
Carvalho
TS
,
Dionizio
A
,
Debortolli
ALB
,
Ventura
TMO
,
Souza
BM
, et al
.
Protein-based engineering of the initial acquired enamel pellicle in vivo: proteomic evaluation
.
J Dent
.
2022
;
116
:
103874
. .
32.
Siqueira
WL
,
Custodio
W
,
McDonald
EE
.
New insights into the composition and functions of the acquired enamel pellicle
.
J Dent Res
.
2012
;
91
(
12
):
1110
8
. .
33.
Gell
DA
.
Structure and function of haemoglobins
.
Blood Cell Mol Dis
.
2018
;
70
:
13
42
. .
34.
Pela
VT
,
Gironda
CC
,
Taira
EA
,
Brito
L
,
Pieretti
JC
,
Seabra
AB
, et al
.
Different vehicles containing CaneCPI-5 reduce erosive dentin wear in situ
.
Clin Oral Investig
.
2023
;
27
(
9
):
5559
68
. .
35.
Oliveira
AA
,
Xavier
ALM
,
Silva
TT
,
Debortolli
ALB
,
Ferdin
ACA
,
Boteon
AP
, et al
.
Acquired pellicle engineering with the association of cystatin and vitamin E against enamel erosion
.
J Dent
.
2023
;
25
(
138
):
104680
. .
You do not currently have access to this content.