The literature is still scarce on studies describing Streptococcus mutans global gene expression under clinical conditions such as those found on complex biofilms from sound root surfaces (SRS) and carious root surfaces (RC). This study aimed to investigate the S. mutans gene expression and functional profile within the metatranscriptome of biofilms from SRS and from RC in an attempt to identify enriched functional signatures potentially associated with the healthy-to-disease transitioning process. Total RNA was extracted, and prepared libraries (SRS = 10 and RC = 9) were paired-end sequenced using the Illumina HiSeq2500. A read count assigned to each gene of the S. mutans UA159 strain was obtained. Differentially expressed genes (DEG) between SRS and RC were identified using the DESeq2 R package, and weighted gene co-expression network analysis (WGCNA) was performed to explore and identify functional modules related to SRS and RC. We found seventeen DEG between SRS and RC samples, with three overexpressed in RC and related to membrane protein, alanyl-tRNA synthetase, and GTP-binding protein, with the remaining ones overexpressed in SRS samples and related to hypothetical protein, transposon integrase, histidine kinase, putative transporter, bacteriocin immunity protein, response regulator, 6-phospho-beta-galactosidase, purine metabolism, and transcriptional regulator. Key-functional modules were identified for SRS and RC conditions based on WGCNA, being 139 hub genes found on SRS key-module and 17 genes on RC key-module. Functional analysis of S. mutans within the metatranscriptome of biofilms from sound root and from carious root revealed a similar pattern of gene expression, and only a few genes have been differentially expressed between biofilms from SRS and those from root carious lesions. However, S. mutans presented a greater functional abundance in the carious lesion samples. Some functional patterns related to sugar (starch, sucrose, fructose, mannose, and lactose) and heterofermentative metabolisms, to cell-wall biosynthesis, and to acid tolerance stress seem to be enriched on carious root surfaces, conferring ecological advantages to S. mutans. Altogether, the present data suggest that a functional signature may be associated with carious root lesions.

1.
Abbe
K
,
Takahashi
S
,
Yamada
T
.
Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions
.
J Bacteriol
.
1982
;
152
:
175
82
. .
2.
Abranches
J
,
Chen
YY
,
Burne
RA
.
Characterization of Streptococcus mutans strains deficient in EIIAB man of the sugar phosphotransferase system
.
Appl Environ Microbiol
.
2003
;
69
:
4760
9
. .
3.
Aggarwal
SD
,
Lloyd
AJ
,
Yerneni
SS
,
Narciso
AR
,
Shepherd
J
,
Roper
DI
,
A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in Streptococcus pneumoniae
.
Proc Natl Acad Sci U S A
.
2021
;
118
:
e2018089118
.
4.
Ajdić
D
,
McShan
WM
,
McLaughlin
RE
,
Savić
G
,
Chang
J
,
Carson
MB
,
Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen
.
Proc Natl Acad Sci U S A
.
2002
;
99
:
14434
9
.
5.
Ajdić
D
,
Pham
VT
.
Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays
.
J Bacteriol
.
2007
;
189
(
14
):
5049
59
. .
6.
Baev
D
,
England
R
,
Kuramitsu
HK
.
Stress-induced membrane association of the Streptococcus mutans GTP-binding protein, an essential G protein, and investigation of its physiological role by utilizing an antisense RNA strategy
.
Infect Immun
.
1999
;
67
:
4510
6
. .
7.
Baker
JL
,
Abranches
J
,
Faustoferri
RC
,
Hubbard
CJ
,
Lemos
JA
,
Courtney
MA
,
Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans
.
Mol Oral Microbiol
.
2015
;
30
:
496
517
.
8.
Banas
JA
,
Vickerman
MM
.
Glucan-binding proteins of the oral streptococci
.
Crit Rev Oral Biol Med
.
2003
;
14
:
89
99
. .
9.
Belda-Ferre
P
,
Alcaraz
LD
,
Cabrera-Rubio
R
,
Romero
H
,
Simón-Soro
A
,
Pignatelli
M
,
The oral metagenome in health and disease
.
ISME J
.
2012
;
6
:
46
56
.
10.
Berg
KH
,
Stamsås
GA
,
Straume
D
,
Håvarstein
LS
.
Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6
.
J Bacteriol
.
2013
;
195
:
4342
54
. .
11.
Bowden
GH
,
Ekstrand
J
,
McNaughton
B
,
Challacombe
SJ
.
Association of selected bacteria with the lesions of root surface caries
.
Oral Microbiol Immunol
.
1990
;
5
:
346
51
. .
12.
Calmes
R
,
Brown
AT
.
Regulation of lactose catabolism in Streptococcus mutans: purification and regulatory properties of phospho-beta-galactosidase
.
Infect Immun
.
1979
;
23
:
68
79
. .
13.
Chattoraj
P
,
Banerjee
A
,
Biswas
S
,
Biswas
I
.
ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance
.
J Bacteriol
.
2010
;
192
:
1312
23
. .
14.
Chen
L
,
Qin
B
,
Du
M
,
Zhong
H
,
Xu
Q
,
Li
Y
,
Extensive description and comparison of human supra-gingival microbiome in root caries and health
.
PLoS One
.
2015
;
10
:
e0117064
.
15.
Cornejo
OE
,
Lefébure
T
,
Bitar
PD
,
Lang
P
,
Richards
VP
,
Eilertson
K
,
Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans
.
Mol Biol Evol
.
2013
;
30
:
881
93
.
16.
Dame-Teixeira
N
,
Parolo
CC
,
Maltz
M
,
Tugnait
A
,
Devine
D
,
Do
T
.
Actinomyces spp. gene expression in root caries lesions
.
J Oral Microbiol
.
2016
;
8
:
32383
. .
17.
Dame-Teixeira
N
,
Fatturi Parolo
CC
,
Maltz
M
,
Rup
AG
,
Devine
DA
,
Do
T
.
Gene expression of bacterial collagenolytic proteases in root caries
.
J Oral Microbiol
.
2018
;
10
:
1424475
.
18.
Damé-Teixeira
N
,
Parolo
CCF
,
Maltz
M
,
Devine
DA
,
Do
T
.
Gene expression profile of Scardovia spp in the metatranscriptome of root caries
.
Braz Oral Res
.
2020
;
34
:
e042
.
19.
De Pascale
G
,
Lloyd
AJ
,
Schouten
JA
,
Gilbey
AM
,
Roper
DI
,
Dowson
CG
,
Kinetic characterization of lipid II-ala:alanyl-tRNA ligase (MurN) from Streptococcus pneumoniae using semisynthetic aminoacyl-lipid II substrates
.
J Biol Chem
.
2008
;
283
:
34571
9
.
20.
Do
T
,
Sheehy
EC
,
Mulli
T
,
Hughes
F
,
Beighton
D
.
Transcriptomic analysis of three Veillonella spp. present in carious dentine and in the saliva of caries-free individuals
.
Front Cell Infect Microbiol
.
2015
;
5
:
25
. .
21.
Do
T
,
Gilbert
SC
,
Clark
D
,
Ali
F
,
Fatturi Parolo
CC
,
Maltz
M
,
Generation of diversity in Streptococcus mutans genes demonstrated by MLST
.
PLoS One
.
2010
;
5
:
e9073
.
22.
Ev
LD
,
Damé-Teixeira
N
,
Do
T
,
Maltz
M
,
Parolo
CCF
.
The role of Candida albicans in root caries biofilms: an RNA-seq analysis
.
J Appl Oral Sci
.
2020
;
28
:
e20190578
. .
23.
Foster
PL
.
Stress-induced mutagenesis in bacteria
.
Crit Rev Biochem Mol Biol
.
2007 Sep–Oct
;
42
(
5
):
373
97
. .
24.
Gong
Y
,
Tian
XL
,
Sutherland
T
,
Sisson
G
,
Mai
J
,
Ling
J
,
Global transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple two-component systems involved in acid adaptation
.
Microbiology
.
2009
;
155
:
3322
32
.
25.
Hamada
S
,
Slade
HD
.
Biology, immunology, and cariogenicity of Streptococcus mutans
.
Microbiol Rev
.
1980
;
44
:
331
84
. .
26.
Hasona
A
,
Crowley
PJ
,
Levesque
CM
,
Mair
RW
,
Cvitkovitch
DG
,
Bleiweis
AS
,
Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2
.
Proc Natl Acad Sci U S A
.
2005
;
102
:
17466
71
.
27.
Huang
M
,
Meng
L
,
Fan
M
,
Hu
P
,
Bian
Z
.
Effect of biofilm formation on virulence factor secretion via the general secretory pathway in Streptococcus mutans
.
Arch Oral Biol
.
2008
;
53
:
1179
85
. .
28.
Jordan
A
,
Reichard
P
.
Ribonucleotide reductases
.
Annu Rev Biochem
.
1998
;
67
:
71
98
.
29.
Juhas
M
,
van Der Meer
JR
,
Gaillard
M
,
Harding
RM
,
Hood
DW
,
Crook
DW
.
Genomic islands: tools of bacterial horizontal gene transfer and evolution
.
FEMS Microbiol Rev
.
2009
;
33
:
376
93
. .
30.
Kawada-Matsuo
M
,
Oogai
Y
,
Zendo
T
,
Nagao
J
,
Shibata
Y
,
Yamashita
Y
,
Involvement of the novel two-component nsrrs and lcrrs systems in distinct resistance pathways against nisin a and nukacin isk-1 in Streptococcus mutans
.
Appl Environ Microbiol
.
2013
;
79
:
4751
5
.
31.
Kirdis
E
,
Jonsson
IM
,
Kubica
M
,
Potempa
J
,
Josefsson
E
,
Masalha
M
,
Ribonucleotide reductase class III, an essential enzyme for the anaerobic growth of Staphylococcus aureus, is a virulence determinant in septic arthritis
.
Microb Pathog
.
2007
;
43
:
179
88
.
32.
Koonin
EV
,
Makarova
KS
,
Wolf
YI
.
Evolutionary genomics of defense systems in archaea and bacteria
.
Annu Rev Microbiol
.
2017
;
71
:
233
61
. .
33.
Langfelder
P
,
Horvath
S
.
Fast R functions for robust correlations and hierarchical clustering
.
J Stat Softw
.
2012
;
46
(
11
):
i11
. .
34.
Lemos
JA
,
Brown
TA
,
Abranches
J
,
Burne
RA
.
Characteristics of Streptococcus mutans strains lacking the MazEF and RelBE toxin-antitoxin modules
.
FEMS Microbiol Lett
.
2005
;
253
:
251
7
. .
35.
Lemos
JA
,
Palmer
SR
,
Zeng
L
,
Wen
ZT
,
Kajfasz
JK
,
Freires
IA
,
The biology of Streptococcus mutans
.
Microbiol Spectr
.
2019 Jan
;
7
(
1
):
10
.
36.
Lévesque
CM
,
Mair
RW
,
Perry
JA
,
Lau
PC
,
Li
YH
,
Cvitkovitch
DG
.
Systemic inactivation and phenotypic characterization of two-component systems in expression of Streptococcus mutans virulence properties
.
Lett Appl Microbiol
.
2007
;
45
:
398
404
. .
37.
Liao
S
,
Klein
MI
,
Heim
KP
,
Fan
Y
,
Bitoun
JP
,
Ahn
SJ
,
Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery
.
J Bacteriol
.
2014
;
196
:
2355
66
.
38.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
:
550
. .
39.
Lynch
DJ
,
Fountain
TL
,
Mazurkiewicz
JE
,
Banas
JA
.
Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture
.
FEMS Microbiol Lett
.
2007
;
268
:
158
65
. .
40.
Marsh
PD
.
Are dental diseases examples of ecological catastrophes?
Microbiology
.
2003
;
149
:
279
94
. .
41.
Mattingly
SJ
,
Dipersio
JR
,
Higgins
ML
,
Shockman
GD
.
Unbalanced growth and macromolecular synthesis in Streptococcus mutans FA-1
.
Infect Immun
.
1976
;
13
:
941
8
. .
42.
McLaughlin
RE
,
Ferretti
JJ
,
Hynes
WL
.
Nucleotide sequence of the streptococcin A-FF22 lantibiotic regulon: model for production of the lantibiotic SA-FF22 by strains of Streptococcus pyogenes
.
FEMS Microbiol Lett
.
1999
;
175
:
171
7
. .
43.
Morales-Aparicio
JC
,
Lara Vasquez
P
,
Mishra
S
,
Barrán-Berdón
AL
,
Kamat
M
,
Basso
KB
,
The impacts of sortase A and the 4′-phosphopantetheinyl transferase homolog Sfp on Streptococcus mutans extracellular membrane vesicle biogenesis
.
Front Microbiol
.
2020
;
11
:
570219
.
44.
Murray
NE
.
Type I restriction systems: sophisticated molecular machines (a legacy of bertani and weigle)
.
Microbiol Mol Biol Rev
.
2000
;
64
:
412
34
. .
45.
Nyvad
B
,
Crielaard
W
,
Mira
A
,
Takahashi
N
,
Beighton
D
.
Dental caries from a molecular microbiological perspective
.
Caries Res
.
2013
;
47
:
89
102
. .
46.
Nyvad
B
,
Takahashi
N
.
Integrated hypothesis of dental caries and periodontal diseases
.
J Oral Microbiol
.
2020
;
12
:
1710953
. .
47.
Paik
S
,
Senty
L
,
Das
S
,
Noe
JC
,
Munro
CL
,
Kitten
T
.
Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis
.
Infect Immun
.
2005
;
73
:
6064
74
. .
48.
Preza
D
,
Olsen
I
,
Aas
JA
,
Willumsen
T
,
Grinde
B
,
Paster
BJ
.
Bacterial profiles of root caries in elderly patients
.
J Clin Microbiol
.
2008
;
46
:
2015
21
. .
49.
Rau
A
,
Gallopin
M
,
Celeux
G
,
Jaffrézic
F
.
Data-based filtering for replicated high-throughput transcriptome sequencing experiments
.
Bioinformatics
.
2013
;
29
:
2146
52
. .
50.
Schleifer
KH
,
Kandler
O
.
Peptidoglycan types of bacterial cell walls and their taxonomic implications
.
Bacteriol Rev
.
1972
;
36
:
407
77
. .
51.
Serbanescu
MA
,
Cordova
M
,
Krastel
K
,
Flick
R
,
Beloglazova
N
,
Latos
A
,
Role of the Streptococcus mutans CRISPR-Cas systems in immunity and cell physiology
.
J Bacteriol
.
2015
;
197
:
749
61
.
52.
Sorek
R
,
Kunin
V
,
Hugenholtz
P
.
CRISPR: a widespread system that provides acquired resistance against phages in bacteria and archaea
.
Nat Rev Microbiol
.
2008
;
6
:
181
6
. .
53.
Suntharalingam
P
,
Senadheera
MD
,
Mair
RW
,
Lévesque
CM
,
Cvitkovitch
DG
.
The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans
.
J Bacteriol
.
2009
;
191
:
2973
84
. .
54.
Takahashi
N
,
Nyvad
B
.
The role of bacteria in the caries process: ecological perspectives
.
J Dent Res
.
2011
;
90
(
3
):
294
303
. .
55.
Takenaka
S
,
Edanami
N
,
Komatsu
Y
,
Nagata
R
,
Naksagoon
T
,
Sotozono
M
,
Periodontal pathogens inhabit root caries lesions extending beyond the gingival margin: a next-generation sequencing analysis
.
Microorganisms
.
2021
;
9
:
2349
.
56.
Vadeboncoeur
C
,
Pelletier
M
.
The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism
.
FEMS Microbiol Rev
.
1997
;
19
:
187
207
. .
57.
van Dam
S
,
Võsa
U
,
van der Graaf
A
,
Franke
L
,
de Magalhães
JP
.
Gene co-expression analysis for functional classification and gene-disease predictions
.
Brief Bioinform
.
2018
;
19
:
575
92
. .
58.
van Wely
KH
,
Swaving
J
,
Freudl
R
,
Driessen
AJ
.
Translocation of proteins across the cell envelope of gram-positive bacteria
.
FEMS Microbiol Rev
.
2001
;
25
:
437
54
. .
59.
Wang
Q
,
Luo
Q
,
Yang
Z
,
Zhao
YH
,
Li
J
,
Wang
J
,
Weighted gene co-expression network analysis identified six hub genes associated with rupture of intracranial aneurysms
.
PLoS One
.
2020
;
15
:
e0229308
.
60.
Wen
ZT
,
Jorgensen
AN
,
Huang
X
,
Ellepola
K
,
Chapman
L
,
Wu
H
,
Multiple factors are involved in regulation of extracellular membrane vesicle biogenesis in Streptococcus mutans
.
Mol Oral Microbiol
.
2021
;
36
:
12
24
.
61.
Yamada
T
,
Takahashi-Abbe
S
,
Abbe
K
.
Effects of oxygen on pyruvate formate-lyase in situ and sugar metabolism of Streptococcus mutans and Streptococcus sanguis
.
Infect Immun
.
1985
;
47
:
129
34
. .
62.
Zeng
L
,
Chen
L
,
Burne
RA
.
Preferred hexoses influence long-term memory in and induction of lactose catabolism by Streptococcus mutans
.
Appl Environ Microbiol
.
2018
;
84
(
14
):
e00864
18
. .
63.
Zhang
B
,
Horvath
S
.
A general framework for weighted gene co-expression network analysis
.
Stat Appl Genet Mol Biol
.
2005
;
4
:
Article17
. .
64.
Zhang
M
,
Zheng
Y
,
Li
Y
,
Jiang
H
,
Huang
Y
,
Du
M
.
Acid-resistant genes of oral plaque microbiome from the functional metagenomics
.
J Oral Microbiol
.
2018
;
10
:
1424455
. .
65.
Zhang
K
,
Ou
M
,
Wang
W
,
Ling
J
.
Effects of quorum sensing on cell viability in Streptococcus mutans biofilm formation
.
Biochem Biophys Res Commun
.
2009
;
379
:
933
8
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.