Recent advances regarding the caries process indicate that ecological phenomena induced by bacterial acid production tilt the de- and remineralization balance of the dental hard tissues towards demineralization through bacterial acid-induced adaptation and selection within the microbiota - from the dynamic stability stage to the aciduric stage via the acidogenic stage [Takahashi and Nyvad, 2008]. Dentin and root caries can also be partly explained by this hypothesis; however, the fact that these tissues contain a considerable amount of organic material suggests that protein degradation is involved in caries formation. In this review, we compiled relevant histological, biochemical, and microbiological information about dentin/root caries and refined the hypothesis by adding degradation of the organic matrix (the proteolytic stage) to the abovementioned stages. Bacterial acidification not only induces demineralization and exposure of the organic matrix in dentin/root surfaces but also activation of dentin-embedded and salivary matrix metalloproteinases and cathepsins. These phenomena initiate degradation of the demineralized organic matrix in dentin/root surfaces. While a bacterial involvement has never been confirmed in the initial degradation of organic material, the detection of proteolytic/amino acid-degrading bacteria and bacterial metabolites in dentin and root caries suggests a bacterial digestion and metabolism of partly degraded matrix. Moreover, bacterial metabolites might induce pulpitis as an inflammatory/immunomodulatory factor. Root and dentin surfaces are always at risk of becoming demineralized in the oral cavity, and exposed organic materials can be degraded by host-derived proteases contained in saliva and dentin itself. New approaches to the prevention and treatment of root/dentin caries are required.

1.
Aamdal-Scheie A, Luan WM, Dahlén G, Fejerskov O: Plaque pH and microflora of dental plaque on sound and carious root surfaces. J Dent Res 1996;75:1901-1908.
2.
Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ: Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 2008;46:1407-1417.
3.
Altinci P, Mutluay M, Seseogullari-Dirihan R, Pashley D, Tjäderhane L, Tezvergil-Mutluay A: NaF Inhibits matrix-bound cathepsin-mediated dentin matrix degradation. Caries Res 2016;50:124-132.
4.
Bickel M, Cimasoni G: The pH of human crevicular fluid measured by a new microanalytical technique. J Periodont Res 1985;20:35-40.
5.
Boushell LW, Nagaoka H, Nagaoka H, Yamauchi M: Increased matrix metalloproteinase-2 and bone sialoprotein response to human coronal caries. Caries Res 2011;45:453-459.
6.
Brackett MG, Agee KA, Brackett WW, Key WO, Sabatini C, Kato MT, Buzalaf MA, Tjäderhane L, Pashley DH: Effect of sodium fluoride on the endogenous MMP activity of dentin matrices. J Nat Sci 2015;1:e118.
7.
Brailsford SR, Shah B, Simons D, Gilbert S, Clark D, Ines I, Adams SE, Allison C, Beighton D: The predominant aciduric microflora of root-caries lesions. J Dent Res 2001;80:1828-1833.
8.
Brailsford SR, Tregaskis RB, Leftwich HS, Beighton D: The predominant Actinomyces spp. isolated from infected dentin of active root caries lesions. J Dent Res 1999;78:1525-1534.
9.
Buzalaf MA, Charone S, Tjäderhane L: Role of host-derived proteinases in dentine caries and erosion. Caries Res 2015;49(suppl 1):30-37.
10.
Cadenaro M, Fontanive L, Navarra CO, Gobbi P, Mazzoni A, Di Lenarda R, Tay FR, Pashley DH, Breschi L: Effect of carboidiimide on thermal denaturation temperature of dentin collagen. Dent Mater 2016;32:492-498.
11.
Chalmers NI, Oh K, Hughes CV, Pradhan N, Kanasi E, Ehrlich Y, Dewhirst FE, Tanner AC: Pulp and plaque microbiotas of children with severe early childhood caries. J Oral Microbiol 2015;7:25951.
12.
Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S: The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res 2006;85:22-32.
13.
Chhour KL, Nadkarni MA, Byun R, Martin FE, Jacques NA, Hunter N: Molecular analysis of microbial diversity in advanced caries. J Clin Microbiol 2005;43:843-849.
14.
Cury JA, de Oliveira BH, Dos Santos AP, Tenuta LM: Are fluoride releasing dental materials clinically effective on caries control? Dent Mater 2016;32:323-333.
15.
Dayan D, Binderman I, Mechanic GL: A preliminary study of activation of collagenase in carious human dentine matrix. Arch Oral Biol 1983;28:185-187.
16.
Deyhle H, Bunk O, Müller B: Nanostructure of healthy and caries-affected human teeth. Nanomedicine 2011;7:694-701.
17.
Dige I, Groenkjaer L, Nyvad B: Molecular studies of the structural ecology of natural occlusal caries. Caries Res 2014;48:451-460.
18.
Dige I, Raarup MK, Nyengaard JR, Kilian M, Nyvad B: Actinomyces naeslundii in initial dental biofilm formation. Microbiology 2009;155:2116-2126.
19.
Dionysopoulos D: The effect of fluoride-releasing restorative materials on inhibition of secondary caries formation. Fluoride 2014;47:258-265.
20.
Edwardsson S: Bacteriological studies on deep areas of carious dentine. Odontol Revy Suppl 1974;32:1-143.
21.
Farges JC, Alliot-Licht B, Renard E, Ducret M, Gaudin A, Smith AJ, Cooper PR: Dental pulp defense and repair mechanisms in dental caries. Mediators Inflamm 2015;2015:230251.
22.
Furseth R, Mjör IA: Cementum; in Mjör IA, Fejeskov O (eds): Histology of the Human Tooth, ed 2. Copenhagen, Munksgaard, 1979, pp 105-123.
23.
Garcia MB, Carrilho MR, Nör JE, Anauate-Netto C, Anido-Anido A, Amore R, Tjäderhane L, Bretz WA: Chlorhexidine inhibits the proteolytic activity of root and coronal carious dentin in vitro. Caries Res 2009;43:92-96.
24.
Hashimoto K, Sato T, Shimauchi H, Takahashi N: Profiling of dental plaque microflora on root caries lesions and the protein-denaturing activity of these bacteria. Am J Dent 2011;24:295-299.
25.
Hayashi T, Nagai Y: Effect of pH on the stability of collagen molecule in solution. J Biochem 1973;73:999-1006.
26.
Hedenbjörk-Lager A, Bjørndal L, Gustafsson A, Sorsa T, Tjäderhane L, Åkerman S, Ericson D: Caries correlates strongly to salivary levels of matrix metalloproteinase-8. Caries Res 2015;49:1-8.
27.
Hojo S, Komatsu M, Okuda R, Takahashi N, Yamada T: Acid profiles and pH of carious dentin in active and arrested lesions. J Dent Res 1994;73:1853-1857.
28.
Hojo S, Takahashi N, Yamada T: Acid profile in carious dentin. J Dent Res 1991;70:182-186.
29.
Hoppenbrouwers PM, Driessens FC, Borggreven JM: The mineral solubility of human tooth roots. Arch Oral Biol 1987;32:319-322.
30.
Horiuchi M, Washio J, Mayanagi H, Takahashi N: Transient acid-impairment of growth ability of oral Streptococcus, Actinomyces, and Lactobacillus: a possible ecological determinant in dental plaque. Oral Microbiol Immunol 2009;24:319-324.
31.
Hoshino E: Predominant obligate anaerobes in human carious dentin. J Dent Res 1985;64:1195-1198.
32.
Ishiguro K, Yamashita K, Nakagaki H, Iwata K, Hayakawa T: Identification of tissue inhibitor of metalloproteinases-1 (TIMP-1) in human teeth and its distribution in cementum and dentine. Arch Oral Biol 1994;39:345-349.
33.
Iwami Y, Abbe K, Takahashi-Abbe S, Yamada T: Acid production by streptococci growing at low pH in a chemostat under anaerobic conditions. Oral Microbiol Immunol 1992;7:304-308.
34.
Jepsen A, Ayna M, Hedderich J, Eberhard J: Significant influence of scaler tip design on root substance loss resulting from ultrasonic scaling: a laserprofilometric in vitro study. J Clin Periodontol 2004;31:1003-1006.
35.
Jiang HW, Zhang W, Ren BP, Zeng JF, Ling JQ: Expression of toll like receptor 4 in normal human odontoblasts and dental pulp tissue. J Endod 2006;32:747-751.
36.
Kato MT, Bolanho A, Zarella BL, Salo T, Tjäderhane L, Buzalaf MA: Sodium fluoride inhibits MMP-2 and MMP-9. J Dent Res 2014;93:74-77.
37.
Kato MT, Leite AL, Hannas AR, Oliveira RC, Pereira JC, Tjäderhane L, Buzalaf MA: Effect of iron on matrix metalloproteinase inhibition and on the prevention of dentine erosion. Caries Res 2010;44:309-316.
38.
Kawai T, Akira S: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373-384.
39.
Kidd E, Fejerskov O, Nyvad B: Infected dentine revisited. Dent Update 2015;42:802-809.
40.
Kuboki Y, Oghushi K, Fusayama T: Collagen biochemistry of the two layers of dentin caries. J Dent Res 1977;56:1233-1237.
41.
Kurita-Ochiai T, Seto S, Suzuki N, Yamamoto M, Otsuka K, Abe K, Ochiai K: Butyric acid induces apoptosis in inflamed fibroblasts. J Dent Res 2008;87:51-55.
42.
Leikina E, Mertts MV, Kuznetsova N, Leikin S: Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci USA 2002;99:1314-1318.
43.
Maijala M, Rautemaa R, Järvensivu A, Richardson M, Salo T, Tjäderhane L: Candida albicans does not invade carious human dentine. Oral Dis 2007;13:279-284.
44.
Mantzourani M, Fenlon M, Beighton D: Association between Bifidobacteriaceae and the clinical severity of root caries lesions. Oral Microbiol Immunol 2009;24:32-37.
45.
Marsh PD: Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 1994;8:263-271.
46.
Martin FE, Nadkarni MA, Jacques NA, Hunter N: Quantitative microbiological study of human carious dentine by culture and real-time PCR: association of anaerobes with histopathological changes in chronic pulpitis. J Clin Microbiol 2002;40:1698-1704.
47.
Mazzoni A, Nascimento FD, Carrilho M, Tersariol I, Papa V, Tjäderhane L, Lenarda R, Tay FR, Pashley DH, Breschi L: MMP activity in the hybrid layer detected with in situ zymography. J Dent Res 2012;91:467-472.
48.
Mazzoni A, Pashley DH, Tay FR, Gobbi P, Orsini G, Ruggeri A Jr, Carrilho M, Tjäderhane L, Di Lenarda R, Breschi L: Immunohistochemical identification of MMP-2 and MMP-9 in human dentin: correlative FEI-SEM/TEM analysis. J Biomed Mater Res A 2009;88:697-703.
49.
Mei ML, Li Q-L, Chu HC,Yiu CKY, Lo ECM: The inhibitory effects of silver diamine fluoride at different concentrations of metalloproteinases. Dent Mater 2012;28:903-908.
50.
Miyoshi Y, Watanabe M, Takahashi N: Autoactivation of proteolytic activity in human whole saliva. J Oral Biosci 2010;52:402-408.
51.
Moreno EC, Aoba T: Comparative solubility study of human dental enamel, dentin, and hydroxyapatite. Calcif Tissue Int 1991;49:6-13.
52.
Nadkarni MA, Simonian MR, Harty DW, Zoellner H, Jacques NA, Hunter N: Lactobacilli are prominent in the initial stages of polymicrobial infection of dental pulp. J Clin Microbiol 2010;48:1732-1740.
53.
Nagase H: Activation mechanisms of matrix metalloproteinases. Biol Chem 1997;378:151-160.
54.
Nascimento FD, Minciotti CL, Geraldeli S, Carrilho MR, Pashley DH, Tay FR, Nader HB, Salo T, Tjäderhane L, Tersariol IL: Cysteine cathepsins in human carious dentin. J Dent Res 2011;90:506-511.
55.
Niederman R, Zhang J, Kashket S: Short-chain carboxylic-acid-stimulated, PMN-mediated gingival inflammation. Crit Rev Oral Biol Med 1997;8:269-290.
56.
Niu LN, Zhang L, Jiao K, Li F, Ding YX, Wang DY, Wang MQ, Tay FR, Chen JH: Localization of MMP-2, MMP-9, TIMP-1, and TIMP-2 in human coronal dentine. J Dent 2011;39:536-542.
57.
Nyvad B: Microbial colonization of human tooth surfaces. APMIS Suppl 1993;32:1-45.
58.
Nyvad B, Fejerskov O: Active root surface caries converted into inactive caries as a response to oral hygiene. Scand J Dent Res 1986;94:281-284.
59.
Nyvad B, Fejerskov O: An ultrastructural study of bacterial invasion and tissue breakdown in human experimental root surface caries. J Dent Res 1990;69:1118-1125.
60.
Nyvad B, Fejerskov O: Assessing the stage of caries lesion activity on the basis of clinical and microbiological examination. Community Dent Oral Epidemiol 1997;25:69-75.
61.
Nyvad B, Kilian M: Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 1987;95:369-380.
62.
Nyvad B, Kilian M: Microflora associated with experimental root surface caries in humans. Infect Immun 1990;58:1628-1633.
63.
Nyvad B, ten Cate JM, Fejerskov O: Arrest of root surface caries in situ. J Dent Res 1997;76:1845-1853.
64.
Obata J, Takeshita T, Shibata Y, Yamanaka W, Unemori M, Akamine A, Yamashita Y: Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing. PLoS One 2014;9:e103712.
65.
Osorio R, Yamauti M, Osorio E, Ruiz-Requena ME, Pashley DH, Tay FR, Toledano M: Zinc reduces collagen degradation in demineralized human dentin explants. J Dent 2011;39:148-153.
66.
Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S: Collagen degradation by host-derived enzymes during aging. J Dent Res 2004;83:216-221.
67.
Pessoa JI, Guimarães GN, Viola NV, da Silva WJ, de Souza AP, Tjäderhane L, Line SR, Marques MR: In situ study of the gelatinase activity in demineralized dentin from rat molar teeth. Acta Histochem 2013;115:245-251.
68.
Preza D, Olsen I, Aas JA, Willumsen T, Grinde B, Paster BJ: Bacterial profiles of root caries in elderly patients. J Clin Microbiol 2008;46:2015-2021.
69.
Rôças IN, Lima KC, Assunção IV, Gomes PN, Bracks IV, Siqueira JF Jr: Advanced caries microbiota in teeth with irreversible pulpitis. J Endod 2015;41:1450-1455.
70.
Rüdiger SG, Carlén A, Meurman JH, Kari K, Olsson J: Dental biofilms at healthy and inflamed gingival margins. J Clin Periodontol 2002;29:524-530.
71.
Schulze-Schweifing K, Banerjee A, Wade WG: Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and pyrosequencing for the characterization of the dentine caries-associated microbiome. Front Cell Infect Microbiol 2014;4:164.
72.
Schüpbach P, Guggenheim B, Lutz F: Human root caries: histopathology of initial lesions in cementum and dentin. J Oral Pathol Med 1989;18:146-156.
73.
Schüpbach P, Osterwalder V, Guggenheim B: Human root caries: microbiota in plaque covering sound, carious and arrested carious root surfaces. Caries Res 1995;29:382-395.
74.
Schüpbach P, Osterwalder V, Guggenheim B: Human root caries: microbiota of a limited number of root caries lesions. Caries Res 1996;30:52-64.
75.
Selvig K: Biological changes at the tooth-saliva interface in periodontal disease. J Dent Res 1969;48(suppl 5):846-855.
76.
Seseogullari-Dirihan R, Apollonio F, Mazzoni A, Tjäderhane L, Pashley D, Breschi L, Tezvergil-Mutluay A: Use of crosslinkers to inactivate dentin MMPs. Dent Mater 2016;32:423-432.
77.
Shellis RP: A Scanning electron-microscopic study of solubility variations in human enamel and dentine. Arch Oral Biol 1996;41:473-484.
78.
Shen S, Samaranayake LP, Yip HK, Dyson JE: Bacterial and yeast flora of root surface caries in elderly, ethnic Chinese. Oral Dis 2002;8:207-217.
79.
Shimada Y, Ichinose S, Sadr A, Burrow MF, Tagami J: Localization of matrix metalloproteinases (MMPs-2, 8, 9 and 20) in normal and carious dentine. Aust Dent J 2009;54:347-354.
80.
Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, Alcaraz LD, Mira A: A tissue-dependent hypothesis of dental caries. Caries Res 2013;47:591-600.
81.
Simón-Soro A, Guillen-Navarro M, Mira A: Metatranscriptomics reveals overall active bacterial composition in caries lesions. J Oral Microbiol 2014;6:25443.
82.
Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR: Dentine as a bioactive extracellular matrix. Arch Oral Biol 2012;57:109-121.
83.
Sulkala M, Larmas M, Sorsa T, Salo T, Tjäderhane L: The localization of matrix metalloproteinase-20 (MMP-20, enamelysin) in mature human teeth. J Dent Res 2002;81:603-607.
84.
Sulkala M, Wahlgren J, Larmas M, Sorsa T, Teronen O, Salo T, Tjäderhane L: The effects of MMP inhibitors on human salivary MMP activity and caries progression in rats. J Dent Res 2001;80:1545-1549.
85.
Takahashi N: Acid-neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol Immunol 2003;18:109-113.
86.
Takahashi N: Oral microbiome metabolism: from ‘who are they?' to ‘what are they doing?' J Dent Res 2015;94:1628-1637.
87.
Takahashi N, Nyvad B: Caries ecology revisited: microbial dynamics and the caries process. Caries Res 2008;42:409-418.
88.
Takahashi N, Nyvad B: The role of bacteria in the caries process: ecological perspectives. J Dent Res 2011;90:294-303.
89.
Takahashi N, Sato T: Preferential utilization of dipeptides by Porphyromonas gingivalis. J Dent Res 2001;80:1425-1429.
90.
Takahashi N, Sato T: Dipeptide utilization by the periodontal pathogens Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Fusobacterium nucleatum. Oral Microbiol Immunol 2002;17:50-54.
91.
Takahashi N, Sato T, Yamada T: Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis. J Bacteriol 2000;182:4704-4710.
92.
Takahashi N, Schachtele CF: Effect of pH on the growth and proteolytic activity of Porphyromonas gingivalis and Bacteroides intermedius. J Dent Res 1990;69:1266-1269.
93.
Takahashi N, Yamada T: Glucose and lactate metabolism by Actinomyces naeslundii. Crit Rev Oral Biol Med 1999;10:487-503.
94.
Takahashi N, Yamada T: Pathways for amino acid metabolism by Prevotella intermedia and Prevotella nigrescens. Oral Microbiol Immunol 2000;15:96-102.
95.
Tezvergil-Mutluay A, Agee KA, Uchiyama T, Imazato S, Mutluay MM, Cadenaro M, Breschi L, Nishitani Y, Tay FR, Pashley DH: The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs. J Dent Res 2011a;90:535-540.
96.
Tezvergil-Mutluay A, Mutluay M, Gu LS, Zhang K, Agee KA, Carvalho RM, Manso A, Carrilho M, Tay FR, Breschi L, Suh BI, Pashley DH: The anti-MMP activity of benzalkonium chloride. J Dent 2011b;39:57-64.
97.
Tezvergil-Mutluay A, Mutluay M, Seseogullari-Dirihan R, Agee KA, Key WO, Scheffel DL, Breschi L, Mazzoni A, Tjäderhane L, Nishitani Y, Tay FR, Pashley DH: Effect of phosphoric acid on the degradation of human dentin matrix. J Dent Res 2013;92:87-91.
98.
Thompson JM, Agee K, Sidow SJ, McNally K, Lindsey K, Borke J, Elsalanty M, Tay FR, Pashley DH: Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid. J Endod 2012;38:62-65.
99.
Tjäderhane L, Buzalaf MA, Carrilho M, Chaussain C: Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of ‘dentin degradomics'. Caries Res 2015;49:193-208.
100.
Tjäderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T: The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res 1998;77:1622-1629.
101.
Tjäderhane L, Sulkala M, Sorsa T, Teronen O, Larmas M, Salo T: The effect of MMP inhibitor metastat on fissure caries progression in rats. Ann NY Acad Sci 1999;878:686-688.
102.
Toledano M, Nieto-Aguilar R, Osorio R, Campos A, Osorio E, Tay FR, Alaminos M: Differential expression of matrix metalloproteinase-2 in human coronal and radicular sound and carious dentine. J Dent 2010;38:635-640.
103.
Toledano M, Yamauti M, Osorio E, Osorio R: Zinc-inhibited MMP-mediated collagen degradation after different dentine demineralization procedures. Caries Res 2012;46:201-207.
104.
van Houte J, Lopman J, Kent R: The predominant cultivable flora of sound and carious human root surfaces. J Dent Res 1994;73:1727-1734.
105.
van Houte J, Lopman J, Kent R: The final pH of bacteria comprising the predominant flora on sound and carious human root and enamel surfaces. J Dent Res 1996;75:1008-1014.
106.
van Strijp AJ, Takatsuka T, Sono R, Iijima Y: Inhibition of dentine collagen degradation by hesperidin: an in situ study. Eur J Oral Sci 2015;123:447-452.
107.
Veerayutthwilai O, Byers MR, Pham TT, Darveau RP, Dale BA: Differential regulation of immune responses by odontoblasts. Oral Microbiol Immunol 2007;22:5-13.
108.
Vidal CM, Tjäderhane L, Scaffa PM, Tersariol IL, Pashley D, Nader HB, Nascimento FD, Carrilho MR: Abundance of MMPs and cysteine cathepsins in caries-affected dentin. J Dent Res 2014;93:269-274.
109.
Wierichs RJ, Meyer-Lueckel H: Systematic review on noninvasive treatment of root caries lesions. J Dent Res 2015;94:261-271.
110.
Yardeni J: Further experiments with intact teeth placed in various buffer solutions. J Dent Res 1952;31:393-397.
111.
Zaremba ML, Stokowska W, Klimiuk A, Daniluk T, Rozkiewicz D, Cylwik-Rokicka D, Waszkiel D, Tokajuk G, Kierklo A, Abdelrazek S: Microorganisms in root carious lesions in adults. Adv Med Sci 2006;51(suppl 1):237-240.
112.
Zehnder M, Wegehaupt FJ, Attin T: A first study on the usefulness of matrix metalloproteinase 9 from dentinal fluid to indicate pulp inflammation. J Endod 2011;37:17-20.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.