Aim: To explore the Ecological Plaque Hypothesis for dental caries. To test modification of the microbiota of dental plaque microcosm biofilms by sucrose pulsing during growth in two different simulated oral fluids, and with a urea-induced plaque pH elevation. Methods: Plaque microcosm biofilms were cultured in an ‘artificial mouth’ with and without 6-min 5% w/v sucrose pulses every 8 h in an environment of continuously supplied saliva-like defined medium with mucin (DMM), or basal medium mucin (BMM, a high-peptone-yeast extract oral fluid analogue), and also in DMM + 10 mmol/l urea, with sucrose pulsing. Forty plaque species were quantified by checkerboard DNA:DNA hybridization analysis. Results: Sucrose pulsing extended rapid plaque growth in DMM and BMM, inducing major microbiota changes in DMM but not in BMM. In DMM, some streptococci and lactobacilli were unaffected while others implicated in caries, together with Candida albicans and Capnocytophaga gingivalis, increased. Aerobic, microaerophilic and major anaerobic species decreased. Elevation of the pHmax from 6.4 to 7.0 had almost no effect on the microbiota. BMM plaques were distinct from DMM plaques with particularly low levels of Candida albicans and Actinomyces. Conclusions: Modest sucrose exposure in a saliva-like environment causes profound changes in the developmental self-organization of plaque microcosms, supporting the Ecological Plaque Hypothesis. Nevertheless, there is significant stability in microbial composition with varying pH near neutrality. Increases in levels of specific bacteria in response to sucrose could be characteristic of organisms particularly important in caries.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.