Introduction: Mendelian randomization (MR) is an innovative epidemiological research method. In order to summarize and clarify the research status of MR related to cardiovascular disease (CVD) and point out the possible future development direction, we conducted a comprehensive and multidimensional bibliometric analysis of the literature published in this field from 2003 to 2024. Methods: We analyzed 1,870 articles published between 2003 and 2024 from the Web of Science Core Collection (WoSCC) using VOSviewer, R software, bibliometric online analysis tool, and CiteSpace software. Results: CVD-related MR research demonstrated an overall upward trend, with the USA leading in terms of publication output, followed by the UK and China. The most prolific institution in this field was the University of Bristol, and Smith GD, who had the highest number of publications (n = 103), was also affiliated with this institution. The European Heart Journal (36 publications, 5,023 citations) was the most cited journal. Related topics of frontiers will still focus on MR, coronary heart disease, heart failure, C-reactive protein, cholesterol, and body mass index. Conclusions: As the scope of MR studies continues to expand, especially the number of measurable features continues to increase, the need for rigorous methods and critical interpretation of MR findings becomes increasingly apparent. However, this ease of use can compromise the reliability of study results due to methodological flaws and publication bias, thereby affecting the perceived significance of the results. Nonetheless, with the emergence of large genetic datasets supporting two-sample MR, resources such as MR-Base and PhenoScanner, MR remains a powerful method for identifying potential pathogenic features in cardiometabolic and other diseases. In addition, it plays a crucial role in prioritizing drug targets for entry into clinical trials.

1.
Roth
GA
,
Mensah
GA
,
Johnson
CO
,
Addolorato
G
,
Ammirati
E
,
Baddour
LM
, et al
.
Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study
.
J Am Coll Cardiol
.
2020
;
76
(
25
):
2982
3021
.
2.
GBD 2019 Diseases and Injuries Collaborators
.
Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019
.
Lancet
.
2020
;
396
(
10258
):
1204
22
.
3.
Lx
L
,
Z
X
,
L
G
,
Yl
S
,
Y
L
,
MM
Z
, et al
.
Bibliometrics and visualization analysis of Mendelian randomization research in the field of ischemic stroke
.
Chin J Stroke
.
2023
;
18
(
03
):
273
80
.
4.
McGue
M
,
Osler
M
,
Christensen
K
.
Causal inference and observational research: the utility of twins
.
Perspect Psychol Sci
.
2010
;
5
(
5
):
546
56
.
5.
Emdin
CA
,
Khera
AV
,
Kathiresan
S
.
Mendelian randomization
.
Jama
.
2017
;
318
(
19
):
1925
6
.
6.
Smith
GD
,
Ebrahim
S
.
Mendelian randomization: prospects, potentials, and limitations
.
Int J Epidemiol
.
2004
;
33
(
1
):
30
42
.
7.
Evangelou
E
,
Warren
HR
,
Mosen-Ansorena
D
,
Mifsud
B
,
Pazoki
R
,
Gao
H
, et al
.
Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits
.
Nat Genet
.
2018
;
50
(
10
):
1412
25
.
8.
van der Harst
P
,
Verweij
N
.
Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease
.
Circ Res
.
2018
;
122
(
3
):
433
43
.
9.
Yengo
L
,
Sidorenko
J
,
Kemper
KE
,
Zheng
Z
,
Wood
AR
,
Weedon
MN
, et al
.
Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry
.
Hum Mol Genet
.
2018
;
27
(
20
):
3641
9
.
10.
Chen
J
,
Spracklen
CN
,
Marenne
G
,
Varshney
A
,
Corbin
LJ
,
Luan
J
, et al
.
The trans-ancestral genomic architecture of glycemic traits
.
Nat Genet
.
2021
;
53
(
6
):
840
60
.
11.
Graham
SE
,
Clarke
SL
,
Wu
KH
,
Kanoni
S
,
Zajac
GJM
,
Ramdas
S
, et al
.
The power of genetic diversity in genome-wide association studies of lipids
.
Nature
.
2021
;
600
(
7890
):
675
9
.
12.
Rasooly
D
,
Peloso
GM
,
Pereira
AC
,
Dashti
H
,
Giambartolomei
C
,
Wheeler
E
, et al
.
Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure
.
Nat Commun
.
2023
;
14
(
1
):
3826
.
13.
Smith
GD
,
Ebrahim
S
.
Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease
.
Int J Epidemiol
.
2003
;
32
(
1
):
1
22
.
14.
Ference
BA
,
Ginsberg
HN
,
Graham
I
,
Ray
KK
,
Packard
CJ
,
Bruckert
E
, et al
.
Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel
.
Eur Heart J
.
2017
;
38
(
32
):
2459
72
.
15.
Holmes
MV
,
Asselbergs
FW
,
Palmer
TM
,
Drenos
F
,
Lanktree
MB
,
Nelson
CP
, et al
.
Mendelian randomization of blood lipids for coronary heart disease
.
Eur Heart J
.
2015
;
36
(
9
):
539
50
.
16.
Burgess
S
,
Harshfield
E
.
Mendelian randomization to assess causal effects of blood lipids on coronary heart disease: lessons from the past and applications to the future
.
Curr Opin Endocrinol Diabetes Obes
.
2016
;
23
(
2
):
124
30
.
17.
Richmond
RC
,
Sharp
GC
,
Ward
ME
,
Fraser
A
,
Lyttleton
O
,
McArdle
WL
, et al
.
DNA methylation and BMI: investigating identified methylation sites at HIF3A in a causal framework
.
Diabetes
.
2016
;
65
(
5
):
1231
44
.
18.
Yarmolinsky
J
,
Relton
CL
,
Lophatananon
A
,
Muir
K
,
Menon
U
,
Gentry-Maharaj
A
, et al
.
Appraising the role of previously reported risk factors in epithelial ovarian cancer risk: a Mendelian randomization analysis
.
PLoS Med
.
2019
;
16
(
8
):
e1002893
.
19.
Zhong
D
,
Gan
Z
,
Zheng
M
,
Li
L
,
Cheng
H
,
Luo
H
, et al
.
Knowledge mapping of nano drug delivery systems across blood: brain barrier from 1996 to 2022: a bibliometric analysis
.
Heliyon
.
2023
;
9
(
5
):
e15828
.
20.
Blount
BC
,
Valentin-Blasini
L
.
Analysis of perchlorate, thiocyanate, nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tandem mass spectrometry
.
Anal Chim Acta
.
2006
;
567
(
1
):
87
93
.
21.
de Winter
JCF
,
Zadpoor
AA
,
Dodou
D
.
The expansion of google scholar versus web of science: a longitudinal study
.
Scientometrics
.
2014
;
98
(
2
):
1547
65
.
22.
Jiang
S
,
Liu
Y
,
Zheng
H
,
Zhang
L
,
Zhao
H
,
Sang
X
, et al
.
Evolutionary patterns and research frontiers in neoadjuvant immunotherapy: a bibliometric analysis
.
Int J Surg
.
2023
;
109
(
9
):
2774
83
.
23.
Tanentzap
AJ
,
Smith
BR
.
Unintentional rewilding: lessons for trophic rewilding from other forms of species introductions
.
Philos Trans R Soc Lond B Biol Sci
.
2018
;
373
(
1761
):
20170445
.
24.
Pilkington
A
.
Bibexcel-quick start guide to bibliometrics and citation analysis
.
2018
.
25.
R Core Team
.
R: A language and environment for statistical computing
.
Vienna, Austria
:
R Foundation for Statistical Computing
;
2005
.
26.
van Eck
NJ
,
Waltman
L
.
Software survey: VOSviewer, a computer program for bibliometric mapping
.
Scientometrics
.
2010
;
84
(
2
):
523
38
.
27.
Synnestvedt
MB
,
Chen
C
,
Holmes
JH
.
CiteSpace II: visualization and knowledge discovery in bibliographic databases
.
AMIA Annu Symp Proc
.
2005
;
2005
:
724
8
.
28.
Eck
NJV
,
Waltman
L
.
Visualizing bibliometric networks
.
Springer International Publishing
;
2014
.
29.
van Eck
NJ
,
Waltman
L
.
Citation-based clustering of publications using CitNetExplorer and VOSviewer
.
Scientometrics
.
2017
;
111
(
2
):
1053
70
.
30.
Lee
PC
,
Su
HN
.
Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis
.
Innovation
.
2010
;
12
(
1
):
26
40
.
31.
Bordons
M
,
Aparicio
J
,
González-Albo
B
,
Díaz-Faes
AA
.
The relationship between the research performance of scientists and their position in co-authorship networks in three fields
.
J Informetrics
.
2015
;
9
(
1
):
135
44
.
32.
Ebrahim
S
,
Davey Smith
G
.
Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology
.
Hum Genet
.
2008
;
123
(
1
):
15
33
.
33.
Verbanck
M
,
Chen
CY
,
Neale
B
,
Do
R
.
Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases
.
Nat Genet
.
2018
;
50
(
5
):
693
8
.
34.
Nikpay
M
,
Goel
A
,
Won
HH
,
Hall
LM
,
Willenborg
C
,
Kanoni
S
, et al
.
A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease
.
Nat Genet
.
2015
;
47
(
10
):
1121
30
.
35.
Bowden
J
,
Davey Smith
G
,
Haycock
PC
,
Burgess
S
.
Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator
.
Genet Epidemiol
.
2016
;
40
(
4
):
304
14
.
36.
Gray
R
,
Wheatley
K
.
How to avoid bias when comparing bone marrow transplantation with chemotherapy
.
Bone Marrow Transplant
.
1991
;
7
(
Suppl 3
):
9
12
.
37.
Keating
S
,
de Witte
T
,
Suciu
S
,
Willemze
R
,
Hayat
M
,
Labar
B
, et al
.
The influence of HLA-matched sibling donor availability on treatment outcome for patients with AML: an analysis of the AML 8A study of the EORTC leukaemia cooperative group and GIMEMA. European organization for research and treatment of cancer. Gruppo italiano malattie ematologiche maligne dell'Adulto
.
Br J Haematol
.
1998
;
102
(
5
):
1344
53
.
38.
Youngman
LD
,
Keavney
BD
,
Palmer
A
,
Parish
S
,
Collins
R
.
Plasma fibrinogen and fibrinogen genotypes in 4685 cases of myocardial infarction and in 6002 controls: test of causality by “Mendelian randomisation”
.
Circulation
.
2000
;
102
(
18
):
31
2
.
39.
Clayton
D
,
McKeigue
PM
.
Epidemiological methods for studying genes and environmental factors in complex diseases
.
Lancet
.
2001
;
358
(
9290
):
1356
60
.
40.
Lauridsen
BK
,
Stender
S
,
Kristensen
TS
,
Kofoed
KF
,
Køber
L
,
Nordestgaard
BG
, et al
.
Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease: mendelian randomization and meta-analysis of 279 013 individuals
.
Eur Heart J
.
2018
;
39
(
5
):
385
93
.
41.
Bowden
J
,
Holmes
MV
.
Meta-analysis and Mendelian randomization: a review
.
Res Synth Methods
.
2019
;
10
(
4
):
486
96
.
42.
Benn
M
,
Nordestgaard
BG
.
From genome-wide association studies to Mendelian randomization: novel opportunities for understanding cardiovascular disease causality, pathogenesis, prevention, and treatment
.
Cardiovasc Res
.
2018
;
114
(
9
):
1192
208
.
43.
Rosoff
DB
,
Davey Smith
G
,
Mehta
N
,
Clarke
TK
,
Lohoff
FW
.
Evaluating the relationship between alcohol consumption, tobacco use, and cardiovascular disease: a multivariable Mendelian randomization study
.
PLoS Med
.
2020
;
17
(
12
):
e1003410
.
44.
Gul
A
,
Zager
P
.
Does altered uric acid metabolism contribute to diabetic kidney disease pathophysiology
.
Curr Diab Rep
.
2018
;
18
(
4
):
18
.
45.
Hsu
CY
,
Yang
W
,
Parikh
RV
,
Anderson
AH
,
Chen
TK
,
Cohen
DL
, et al
.
Race, genetic ancestry, and estimating kidney function in CKD
.
N Engl J Med
.
2021
;
385
(
19
):
1750
60
.
46.
Sędzikowska
A
,
Szablewski
L
.
Insulin and insulin resistance in alzheimer's disease
.
Int J Mol Sci
.
2021
;
22
(
18
):
9987
.
47.
Tahmi
M
,
Palta
P
,
Luchsinger
JA
.
Metabolic syndrome and cognitive function
.
Curr Cardiol Rep
.
2021
;
23
(
12
):
180
.
48.
Takeishi
J
,
Tatewaki
Y
,
Nakase
T
,
Takano
Y
,
Tomita
N
,
Yamamoto
S
, et al
.
Alzheimer's disease and type 2 diabetes mellitus: the use of MCT oil and a ketogenic diet
.
Int J Mol Sci
.
2021
;
22
(
22
):
12310
.
49.
Saklayen
MG
.
The global epidemic of the metabolic syndrome
.
Curr Hypertens Rep
.
2018
;
20
(
2
):
12
.
50.
Sanderson
E
,
Glymour
MM
,
Holmes
MV
,
Kang
H
,
Morrison
J
,
Munafò
MR
, et al
.
Mendelian randomization
.
Nat Rev Methods Primers
.
2022
;
2
:
6
.
51.
Chong
M
,
Sjaarda
J
,
Pigeyre
M
,
Mohammadi-Shemirani
P
,
Lali
R
,
Shoamanesh
A
, et al
.
Novel drug targets for ischemic stroke identified through mendelian randomization analysis of the blood proteome
.
Circulation
.
2019
;
140
(
10
):
819
30
.
52.
Batra
G
,
Ghukasyan Lakic
T
,
Lindbäck
J
,
Held
C
,
White
HD
,
Stewart
RAH
, et al
.
Interleukin 6 and cardiovascular outcomes in patients with chronic kidney disease and chronic coronary syndrome
.
JAMA Cardiol
.
2021
;
6
(
12
):
1440
5
.
53.
Tzoulaki
I
,
Elliott
P
,
Kontis
V
,
Ezzati
M
.
Worldwide exposures to cardiovascular risk factors and associated health effects: current knowledge and data gaps
.
Circulation
.
2016
;
133
(
23
):
2314
33
.
54.
Fewell
Z
,
Davey Smith
G
,
Sterne
JA
.
The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study
.
Am J Epidemiol
.
2007
;
166
(
6
):
646
55
.
55.
Smith
GD
,
Lawlor
DA
,
Harbord
R
,
Timpson
N
,
Day
I
,
Ebrahim
S
.
Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology
.
PLoS Med
.
2007
;
4
(
12
):
e352
.
56.
Yuan
S
,
Tang
B
,
Zheng
J
,
Larsson
SC
.
Circulating lipoprotein lipids, apolipoproteins and ischemic stroke
.
Ann Neurol
.
2020
;
88
(
6
):
1229
36
.
57.
Gill
D
,
Georgakis
MK
,
Zuber
V
,
Karhunen
V
,
Burgess
S
,
Malik
R
, et al
.
Genetically predicted midlife blood pressure and coronary artery disease risk: mendelian randomization analysis
.
J Am Heart Assoc
.
2020
;
9
(
14
):
e016773
.
58.
Fordyce
CB
,
Roe
MT
,
Ahmad
T
,
Libby
P
,
Borer
JS
,
Hiatt
WR
, et al
.
Cardiovascular drug development: is it dead or just hibernating
.
J Am Coll Cardiol
.
2015
;
65
(
15
):
1567
82
.
59.
Harrison
RK
.
Phase II and phase III failures: 2013-2015
.
Nat Rev Drug Discov
.
2016
;
15
(
12
):
817
8
.
60.
Wang
Q
,
Würtz
P
,
Auro
K
,
Morin-Papunen
L
,
Kangas
AJ
,
Soininen
P
, et al
.
Effects of hormonal contraception on systemic metabolism: cross-sectional and longitudinal evidence
.
Int J Epidemiol
.
2016
;
45
(
5
):
1445
57
.
61.
Marmot
M
,
Brunner
E
.
Alcohol and cardiovascular disease: the status of the U shaped curve
.
BMJ
.
1991
;
303
(
6802
):
565
8
.
62.
Corrao
G
,
Rubbiati
L
,
Bagnardi
V
,
Zambon
A
,
Poikolainen
K
.
Alcohol and coronary heart disease: a meta-analysis
.
Addiction
.
2000
;
95
(
10
):
1505
23
.
63.
Mukamal
KJ
,
Rimm
EB
.
Alcohol’s effects on the risk for coronary heart disease
.
Alcohol Res Health
.
2001
;
25
(
4
):
255
61
.
64.
Kloner
RA
,
Rezkalla
SH
.
To drink or not to drink? That is the question
.
Circulation
.
2007
;
116
(
11
):
1306
17
.
65.
Keenan
T
,
Zhao
W
,
Rasheed
A
,
Ho
WK
,
Malik
R
,
Felix
JF
, et al
.
Causal assessment of serum urate levels in cardiometabolic diseases through a mendelian randomization study
.
J Am Coll Cardiol
.
2016
;
67
(
4
):
407
16
.
66.
Yang
F
,
Lu
Y
,
Chen
S
,
Wang
K
,
Hu
T
,
Cui
H
.
Sex-specific effect of serum urate levels on coronary heart disease and myocardial infarction prevention: a Mendelian randomization study
.
Nutr Metab Cardiovasc Dis
.
2022
;
32
(
5
):
1266
74
.
67.
Efstathiadou
A
,
Gill
D
,
McGrane
F
,
Quinn
T
,
Dawson
J
.
Genetically determined uric acid and the risk of cardiovascular and neurovascular diseases: a mendelian randomization study of outcomes investigated in randomized trials
.
J Am Heart Assoc
.
2019
;
8
(
17
):
e012738
.
68.
Kleber
ME
,
Delgado
G
,
Grammer
TB
,
Silbernagel
G
,
Huang
J
,
Krämer
BK
, et al
.
Uric acid and cardiovascular events: a mendelian randomization study
.
J Am Soc Nephrol
.
2015
;
26
(
11
):
2831
8
.
69.
Liao
LZ
,
Li
WD
,
Liu
Y
,
Li
JP
,
Zhuang
XD
,
Liao
XX
.
Exploring the causal pathway from omega-6 levels to coronary heart disease: a network Mendelian randomization study
.
Nutr Metab Cardiovasc Dis
.
2020
;
30
(
2
):
233
40
.
70.
Mazidi
M
,
Shekoohi
N
,
Katsiki
N
,
Banach
M
.
Omega-6 fatty acids and the risk of cardiovascular disease: insights from a systematic review and meta-analysis of randomized controlled trials and a Mendelian randomization study
.
Arch Med Sci
.
2022
;
18
(
2
):
466
79
.
71.
Soininen
P
,
Kangas
AJ
,
Würtz
P
,
Suna
T
,
Ala-Korpela
M
.
Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics
.
Circ Cardiovasc Genet
.
2015
;
8
(
1
):
192
206
.
72.
Ala-Korpela
M
,
Davey Smith
G
.
Metabolic profiling-multitude of technologies with great research potential, but (when) will translation emerge
.
Int J Epidemiol
.
2016
;
45
(
5
):
1311
8
.
73.
Mundra
PA
,
Shaw
JE
,
Meikle
PJ
.
Lipidomic analyses in epidemiology
.
Int J Epidemiol
.
2016
;
45
(
5
):
1329
38
.
74.
Ganz
P
,
Heidecker
B
,
Hveem
K
,
Jonasson
C
,
Kato
S
,
Segal
MR
, et al
.
Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease
.
JAMA
.
2016
;
315
(
23
):
2532
41
.
75.
Hartwig
FP
,
Davies
NM
,
Hemani
G
,
Davey Smith
G
.
Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique
.
Int J Epidemiol
.
2016
;
45
(
6
):
1717
26
.
76.
Khera
AV
,
Kathiresan
S
.
Genetics of coronary artery disease: discovery, biology and clinical translation
.
Nat Rev Genet
.
2017
;
18
(
6
):
331
44
.
77.
Zheng
J
,
Erzurumluoglu
AM
,
Elsworth
BL
,
Kemp
JP
,
Howe
L
,
Haycock
PC
, et al
.
LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis
.
Bioinformatics
.
2017
;
33
(
2
):
272
9
.
78.
Staley
JR
,
Blackshaw
J
,
Kamat
MA
,
Ellis
S
,
Surendran
P
,
Sun
BB
, et al
.
PhenoScanner: a database of human genotype-phenotype associations
.
Bioinformatics
.
2016
;
32
(
20
):
3207
9
.
79.
Davey Smith
G
,
Paternoster
L
,
Relton
C
.
When will mendelian randomization become relevant for clinical practice and public health
.
JAMA
.
2017
;
317
(
6
):
589
91
.
You do not currently have access to this content.