Objective: This study explores the effects of helix B surface peptide (HBSP) on myocardial infarct size (IS), cardiac function, cardiomyocyte apoptosis and oxidative stress damage in mouse hearts subjected to myocardial ischemia-reperfusion injury (MIRI) and also the mechanisms underlying the effects. Method: Male adult mice were subjected to 45 min of ischemia followed by 2 h of reperfusion; 5 min before the reperfusion, they were treated with HBSP or vehicle. MIRI-induced IS, cardiomyocyte apoptosis and cardiac functional impairment were determined and compared. Western blot analysis was then conducted to elucidate the mechanism of HBSP after treatment. Results: HBSP administration before reperfusion significantly reduced the myocardial IS, decreased cardiomyocyte apoptosis, reduced the activities of superoxide dismutase and malondialdehyde and partially preserved heart function. As demonstrated by the Western blot analysis, HBSP after treatment upregulated Akt/GSK-3β/ERK and STAT-3 phosphorylation; these inhibitors, in turn, weakened the beneficial effects of HBSP. Conclusion: HBSP plays a protective role in MIRI in mice by inhibiting cardiomyocyte apoptosis, reducing the MIRI-induced IS, oxidative stress and improving the heart function after MIRI. The mechanism underlying these effects of HBSP is related to the activation of the RISK (reperfusion injury salvage kinase, Akt/GSK-3β/ERK) and SAFE (STAT-3) pathways.

1.
Yellon DM, Hausenloy DJ: Myocardial reperfusion injury. N Engl J Med 2007;357:1121-1135.
2.
Brines M, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M, Latini R, Xie QW, Smart J, Su-Rick CJ, Pobre E, Diaz D, Gomez D, Hand C, Coleman T, Cerami A: Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA 2004;101:14907-14912.
3.
Joyeux-Faure M: Cellular protection by erythropoietin: New therapeutic implications? J Pharmacol Exp Ther 2007;323:759-762.
4.
Unden J, Sjolund C, Lansberg JK, Wieloch T, Ruscher K, Romner B: Post-ischemic continuous infusion of erythropoeitin enhances recovery of lost memory function after global cerebral ischemia in the rat. BMC Neurosci 2013;14:27.
5.
Bogoyevitch MA: An update on the cardiac effects of erythropoietin cardioprotection by erythropoietin and the lessons learnt from studies in neuroprotection. Cardiovasc Res 2004;63:208-216.
6.
Voors AA, Belonje AM, Zijlstra F, Hillege HL, Anker SD, Slart RH, Tio RA, van T HA, Jukema JW, Peels HO, Henriques JP, Ten BJ, Vos J, van Gilst WH, van Veldhuisen DJ: A single dose of erythropoietin in ST-elevation myocardial infarction. Eur Heart J 2010;31:2593-2600.
7.
Ludman AJ, Yellon DM, Hasleton J, Ariti C, Babu GG, Boston-Griffiths E, Venugopal V, Walker M, Holdright D, Swanton H, Crake T, Brull D, Moon JC, Puranik R, Muthurangu V, Taylor A, Hausenloy DJ: Effect of erythropoietin as an adjunct to primary percutaneous coronary intervention: a randomised controlled clinical trial. Heart 2011;97:1560-1565.
8.
Ferrario M, Arbustini E, Massa M, Rosti V, Marziliano N, Raineri C, Campanelli R, Bertoletti A, De Ferrari GM, Klersy C, Angoli L, Bramucci E, Marinoni B, Ferlini M, Moretti E, Raisaro A, Repetto A, Schwartz PJ, Tavazzi L: High-dose erythropoietin in patients with acute myocardial infarction: a pilot, randomised, placebo-controlled study. Int J Cardiol 2011;147:124-131.
9.
Najjar SS, Rao SV, Melloni C, Raman SV, Povsic TJ, Melton L, Barsness GW, Prather K, Heitner JF, Kilaru R, Gruberg L, Hasselblad V, Greenbaum AB, Patel M, Kim RJ, Talan M, Ferrucci L, Longo DL, Lakatta EG, Harrington RA: Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction. REVEAL: a randomized controlled trial. JAMA 2011;305:1863-1872.
10.
Brines M: The therapeutic potential of erythropoiesis-stimulating agents for tissue protection: a tale of two receptors. Blood Purif 2010;29:86-92.
11.
Brines M, Patel NS, Villa P, Brines C, Mennini T, De Paola M, Erbayraktar Z, Erbayraktar S, Sepodes B, Thiemermann C, Ghezzi P, Yamin M, Hand CC, Xie QW, Coleman T, Cerami A: Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci USA 2008;105:10925-10930.
12.
Ahmet I, Tae HJ, Juhaszova M, Riordon DR, Boheler KR, Sollott SJ, Brines M, Cerami A, Lakatta EG, Talan MI: A small nonerythropoietic helix B surface peptide based upon erythropoietin structure is cardioprotective against ischemic myocardial damage. Mol Med 2011;17:194-200.
13.
Li DY, Tao L, Liu H, Christopher TA, Lopez BL, Ma XL: Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion. Apoptosis 2006;11:923-930.
14.
Ueba H, Brines M, Yamin M, Umemoto T, Ako J, Momomura S, Cerami A, Kawakami M: Cardioprotection by a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin. Proc Natl Acad Sci USA 2010;107:14357-14362.
15.
Ueba H, Shiomi M, Brines M, Yamin M, Kobayashi T, Ako J, Momomura S, Cerami A, Kawakami M: Suppression of coronary atherosclerosis by helix B surface peptide, a nonerythropoietic, tissue-protective compound derived from erythropoietin. Mol Med 2013;19:195-202.
16.
van Rijt WG, Nieuwenhuijs-Moeke GJ, van Goor H, Jespersen B, Ottens PJ, Ploeg RJ, Leuvenink HG: ARA290, a non-erythropoietic EPO derivative, attenuates renal ischemia/reperfusion injury. J Transl Med 2013;11:9.
17.
van Rijt WG, Nieuwenhuijs-Moeke GJ, van Goor H, Ottens PJ, Ploeg RJ, Leuvenink HG: Renoprotective capacities of non-erythropoietic EPO derivative, ARA290, following renal ischemia/reperfusion injury. J Transl Med 2013;11:286.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.