Aims: Cardiomyopathies are common cardiovascular diseases in children. Cardiac magnetic resonance imaging (cMRI) and echocardiography (Echo) are routinely applied in the detection and diagnosis of pediatric cardiomyopathies. In this study, we compared and explored the correlation between these two measurements in pediatric patients with various cardiomyopathies. Methods and Results: A total of 53 pediatric patients with cardiomyopathy hospitalized during the recent 3 years in our hospital were analyzed. All of them and 22 normal controls were assessed by both cMRI and Echo. Cardiac function of the patients was graded according to the New York Heart Association functional classification. The cardiac function indexes measured with both cMRI and Echo included left-ventricular (LV) end-diastolic volume (EDV), end-systolic volume, ejection fraction and fractional shortening. These parameters were somehow lower in cMRI measurements than in Echo measurements. The index of diastolic function, such as peak filling rate (PFR) measured with cMRI, had a good correlation with the clinical cardiac functional score, while the index of the diastolic function (early/atrial filling ratio and isovolumic relaxation time) measured with Echo was not well correlated with the clinical cardiac function score. Significant systolic dysfunction was detected by cMRI in 34 patients with dilated cardiomyopathy, LV noncompaction or endocardial fibroelastosis. Significant diastolic dysfunction was detected by cMRI in 19 patients with hypertrophic cardiomyopathy or restrictive cardiomyopathy showing an alteration in PFR and EDV. Conclusion: Both cMRI and Echo are of great value in the diagnosis and assessment of cardiac function in pediatric patients with cardiomyopathy. cMRI could accurately display the characteristic morphological changes in the hearts affected with cardiomyopathies, and late gadolinium enhancement on cMRI may reveal myocardial fibrosis, which has obvious advantages over Echo measurements in diagnosis. Furthermore, cMRI can quantitatively determine ventricular function because it does not make invalid geometrical assumptions.

1.
Richardson P, Mekenna W, Bristow M, et al: Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyophathies. Circulation 1996;93:841-842.
2.
Zhang Z: Cardiovascular Magnetic Resonance Imaging. Beijing, People's Medical Publishing House, 2006.
3.
Tunstall Pedoe H, Kuulasmaa K, Amouyel P, et al: Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Circulation 1994;90:583-612.
4.
The effects of tissue plasminogen activator, streptokinase, or both on coronary artery patency, ventricular function, and survival after acute myocardial infarction. The GUSTO Angiographic Investigators. N Engl J Med 1993;329:1615-1622.
5.
Victor MA, Lissa S, Lynn W, et al: Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation 2004;110:1814-1818.
6.
Gardner BI, Bingham SE, Allen MR, et al: Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. Cardiovasc Ultrasound 2009;7:38.
7.
Aurich M, André F, Keller M, et al: Assessment of left ventricular volumes with echocardiography and cardiac magnetic resonance imaging: real-life evaluation of standard versus new semiautomatic methods. J Am Soc Echocardiogr 2014;27:1017-1024.
8.
Anand IS, Florea VG, Solomon SD, et al: Noninvasive assessment of left ventricular remodeling: concepts, techniques, and implication for clinical trials. J Card Fail 2002;8(6 suppl):452-464.
9.
Chuang ML, Hibberd MG, Salton CJ, et al: Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 2002;35:477-484.
10.
Mahnken AH, Spuntrup E, Wildberger JE, et al: Quantification of cardiac function with multiple spiral CT using retrospective ECG gating: comparison with MRI (in German). Rofo 2003;175:83-88.
11.
Li KC, Liu YQ, Liu HY, et al: The MRI measurement of normal heart of Chinese people (in Chinese). Chin Circ J 1991;6:24-26.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.